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Chapter I

Introduction

This document is a tutorial for the HARP software program, which is a member of the

Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for

reliability/availability prediction (refs. 1 and 2). (See vol. 1 of this TP.)

HiRel offers a toolbox of integrated I reliability/availability programs that can be used to

customize the user's application in a workstation or nonworkstation environment. HiRel consists

of interactive graphical input/output programs and four reliability/availability modeling engines

that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant

system architectures and is also applicable to electronic systems in general. Three of the HiRel

programs were developed by researchers at Duke University and at NASA Langley Research
Center.

The tool system was designed to be compatible with most computing platforms and operating

systems, and some programs have been beta tested within the aerospace community for over

8 years. Many examples of the system's use have been reported in the literature and at tile

HARP Workshop conducted at Duke University, July 10 11, 1990.

The wide range of applications of interest has caused HiRel to evolve into a family of

independent programs that communicate with each other through files that each program

generates. In this sense, HiRel offers a toolbox of integrated programs that can be executed

to customize the user's application. Figure 1 shows the HiRel tool system. The core of this

capability consists of the reliability/availability modeling engines, which are collectively called

the Hybrid Automated Reliability Predictor (HARP).

The modeling engines are comprised of four self-contained executable software components:

the original HARP program (described in vols. 1 and 2 of this TP), the Monte Carlo integrated

HARP (MCI-HARP) (ref. 3), Phased Mission HARP (PM-HARP) (ref. 4), and X Window

System HARP (XHARP) (ref. 5). In conjunction with the engine suite, are two input/output
interactive graphical user-interface programs that provide a workstation environment for Hil:lel.

These programs are called the Graphics Oriented (GO) program (described in vol. 3) and the

HARP Output (HARPO) program (described in vol. 4). The base components of HiRel (GO,

HARP, MCI-HARP, and HARPO) are available through NASA's software distribution facility,

COSMIC, 2 or from the developers at Duke University. 3 The XHARP engine 4 is available from

the university where it was developed. PM-HARP can be obtained from The Boeing Commercial

Airplane Group. ,_

A number of examples are presented in this tutorial beginning with simple models and

progressing to more complex ones to illustrate the HARP capability and to present more detail on

the HARP modeling process. This tutorial only demonstrates the textual input/output HARP

format. The developers were successful in retaining an identical textual input/output and file

1 Integrated denotes the ability of HiRel software programs to communicate with each other in a common ASCII file

format. These files are discussed in volume 1 of this Technical Paper.

2 COSMIC, The University of Georgia, 382 East Broad St., Athens, GA 30602.

a Duke University, Dept. of Electrical Eng., Durham, NC, 27706 (Kishor S. Trivedi).

4 Clemson University, Dept. of Computer Science, Clemson, SC 29734 (Robert Geist).

5 The Boeing Commercial Airplane Group, Seattle, WA 98124 (Tilak C. Sharma).



Figure 1. HiRel: GO, HARPO, and suite of reliability engines.

structure for all versions of HARP running on different computing platforms. This convenience

was accomplished by implementing textual HARP in ANSI standard Fortran 77.

Graphical input/output capabilities are presented in volumes 3 and 4 of this Technical Paper.
The graphical user interfaces (GUI), GO and HARPO, use the ANSI standard Graphical Kernel

System (GKS) software to facilitate portability across several graphical display devices. Unlike

the success achieved with textual HARP, the GUI's do not have identical appearances on the

screens of different display devices associated with their different computing platforms. The
difference in appearance is fortunately minimal and was dictated as such by the GKS installed

on a particular comt uting platform (ref. 2).

Although some modeling concepts are explained in this document to illustrate the modeling

process, the bulk of the theoretical concepts are presented in volume 1 of this Technical Paper and

in several research papers cited in the reference section. The most comprehensive compilation

of HiRel papers can be found in the proceedings of the HARP Workshop.

Combinatorial fault occurrence/repair models (FORM's) are initially presented in this

volume. The single fault/error handling models (FEHM's) are presented next and are followed

by the HARP multifault/error handling models applied to the near-coincident fault application.
Appendix A provides file listings of worked examples from this tutorial, and appendix B

provides additional examples with particular emphasis on the dynamic fault tree gates. Sequence

dependency FORM's are also presented in appendix B.

Important concepts necessary to use HARP properly are presented in volume 1 of this

Technical Paper, which should be read before any serious applications are undertaken with this

capability. HiRel includes a number of software programs that are described in other volumes of
this Technical Paper that may facilitate the user's productivity in using the HARP capability.

Volumes 3 and 4 present the GO and the HARPO software programs, respectively. These
documents describe the GUI for HiRel.



In the body of this document, a dialog is presented to illustrate tile interaction between the

user and the program. HARP commands are prefaced with the symbol $ or more commonly

with no special prefix, and user responses within the sample sessions are identified with the

symbol > preceding the response.

The GO, HARP, and HARPO Hittel software t)rograms have been ported to many computing

platforms and operating systems, which include Sun Microsystems, DEC VAX, IBM-compatibles

286, 386, and 486 PC's, Apollo, Alliant, Convex, Encore, Gould, Pyramid, and Berkley

UNIX 4.3, AT&T UNIX 5.2, DEC VMS and Ultrix, and MS DOS, respectively.

Tile IBM-compatible PC 16-bit version requires a minimum of 512K of meinory a,s well as a

floating-point accelerator. Throughout the text, differences between the PC 16-bit version and

tile fllll version are noted. Tile PC 32-bit version running under DOS or OS/2 gives the full
capability of tile Sun or VAX versions.

The user is reminded that using HARP as a combinatorial fault tree solver is computationally

inefficient, although convenient if the user is accustomed to using HARP. However, the fault

tree is particularly useful when fault/error handling is included in the model or when sequence

dependencies are modeled. Each model is no longer combinatorial.



Chapter 2

Creation of Files

This section presents an overview of the HARP program structure, execution flow, and

tile files it generates. Textural HARP executes on DEC VAX workstations under VMS, Sun

Mierosysten_ workstations under UNIX, and IBM-('Omlmtibh_ 286, 386, and 486 PC's under

MS DOS and OS/2. Textual HARP rc_luires an ANSI standard Fortran 77 compiler and has

been compiled with lmh¢,y and Nlicr,_sofl FOIITI/AN for PC's. It is comp,til_le with a wide range

of computing platfin'ms because it was wril ten in ANSI :4 andm'd l_in'lra,, 77 for wide portal)lilly.

HARP creates AS(?II files, which are comtmtible with lllOSt computing platforms. For cxmnple,

tiles crl.ated under the PC cnvironlnent c_iu t)e executed t)y a DEC VAX. In this way, a PC can

]w ltst,([ as a workstation for input and OIlIpllt processing, and VAX can be used for large system

(-_mltmlations. tlARP has an interactive l)rolnpting input cai)at)ility and is composed of three

st,alld-al()lle programs: tdriv_, fl'fact', and ]tall)tlt.q. (See fig. 2.) As the user successively _,xeeules

the programs in this order, they create files thai are required by downstream programs.

TEXTUAL

INPUT

XHARP

TDRIVE

MARKOI
C"HA IN
(;I:'NERA IOR

HARP / MCI-ttAR_

I. IFA('E ItARPI:N(;

TRANSI'I'ION MARKOI
MATRIX ('�lAIN

St(TI ,"P SOl. I 't:R

PM-ttARP

77)RIVE FII:A('I:" IIARPENG

MARKOI TRANSHTON MARKOI'
('ItALN' MATRIX ('tlAI,N'
(_t:NKRATOR SETUP SOIA "ER

CttAN(;I- MODEL

I'ARAMH'ERS

BULA

('IIANGE MODEl. /

PARAMETERS

Figure 2. HARP execution and flow relationship to GO and HARPO.

The programs also accept user-generated or modified files created with a text editor. Thus,

the user has the option to use the interactive input capability or simply input user-created files.

The input to tdrive can also come from files generated by GO. The output of textual HARP are

tabular structured files. These files can be used as input to HARPO, which allows the user to

graphically display the tabular data in a wide variety of forms in an interactive mode. Thus,
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msan overview,textual HARP is by analogythe centralprocessingunit, GO is a graphical
input to textual HARPthat bypassestextual ttARP's interactiveinput-promptingcapability,
andHARPOis the graphicaloutput processorthat readstextual HARP'stabularoutput files.
(Seevols.3 and4 of this TP.)

A brief descriptionof tile filescreatedby the HARP programsis givenhere. A detailed
presentationis givenin volume1of this Te,chnicalPaper.The MODELNAMEis specifiedby
the userwhenthe programtdrive is executed. The user should avoid special characters that

are likely to interfere with the users' operating system; for example, a MODELNAME called *
would be a t)ad choice.

2.1. Files Created by tdrive

If the user input is a fault tree, then tdrive creates the following fles:

• MODELNAME.DIC A file that contains the name of each conti)onent in the model, its

symbolic failure rate, and any fault/error handling infi)rmation. This file is called the
(tictiotmry file.

• MOI)ELNAI_IE.FTt_ An interim file created by the program or the fault tree file fronl t.he

tlARP graphical input program.

• XI()I)ELNAME.INT Tit(' fault tree is eonverte(t to a Markov chain. This fib, ('()nt.ains II1(,

st,lies all(t state transitions of the Marker chain after conversi()n.

• M()I)t_;LNAME.TXT This file contains the 10xlual fault, tre(, des('ril)tion given by the user.

If the user input is a Marker chain, then tdrive (:reales the following file,s:

• MOI)ELNAME.I)IC A fih_ that, contaills the name of ea(:h ('omt)()nent in the m()(lel, ils

symbolic f'ailur(_ rate. and any f'ault/(wr()r handling in[ormati()n. This file is calh'(1 lh(,

(ti(:t.iomuy file. This fih, is optioz,d for .klarkov chain input but inq)erative fin" fault tr('('
input.

* I_I()I)EI_NAME.INT This file (:(mtains the states and state transitions of the Mark(_v chaill

as ini)ut, t)y the ust,r. An imp()rtant point for the Marker chain input: the first stale listed in

_he M()D]_LNAME.INT file musl t)e the initial state of the system. That is, if th(, lit'st line

reads STATE1 STATE2 3*LAMt3])A, then STATE1 is assumed to t)e the initial state of the
Marker chain.

2.2. Files Created by fiface

The following files are created by flfacc:

• M()DELNAME.AIA_ This file contains the all-inchlsive next faults rates if necessary;
otherwise, it is enlpty.

* MODELNAME.MAT This file contains the Sl)arse nmtrix format of the Markov chain. Row

and cohnnn values of nonzero entries are listed in ascending order.

• MODELNAME.SAM

otherwise, it is empty.

• MODELNAME.SYM

program.

• MODELNAME.USR

otherwise, it is empty.

This file contains the salne-tyi)e next faults rates if necessary;

This file contains symbol table information for the HARP engine

This file contains the user-defined next faults rates if necessary;

5



2.3. Files Created by harpeng

The following files are created by harpeng:

• MODELNAME.INP This file contains the user input values for symbolic failure and repair

rates. If desired, this file can be used for future runs (called an echo file by the harpeng

program.

• MODELNAME.PT*- This file contains the unreliability values. It can be used if a plot

program is available. (The symbol * is an integer from 1 to 9.)

• MODELNAME.RS* This file contains the results of the program execution. The file lists

the values given to symbolic failure or repair rates, solution values for coverage models, failure

state probabilities (if input is a Markov chain, it can have some active state probabilities if

requested), and unreliability and reliability values and bounds information. (The symbol *

is all integer from 1 to 9.)

6



Chapter 3

Fault Occurrence/Repair Model
(FORM)

This chapter addresses tit(', construction and interpretation of FORM's fi)r fiutlt trees and

Markov chains. We begin with a model of a simple systent consisting of three processors. ()ill>'

one t)rocessor is needed for lhe system to remain operational. For now, fault/error handling

mechanisms are disregarded. When a processor fails, it is simply discarded and no re('overy or

repair is attempted.

3.1. Three-Processor System Fault Tree

The fault tree input is demonstrated first. Because fault/error handling is ignored, the I:EtlM

model type none is used when entering the dictionary informal ion. After entering the dictionary

infi)rmation, the strlletllre of the model is entered as pot! rayed in the fault I rec of figure 3. \\'hen

using HARP with textual input, the user normally first skt'lehes the system fimlt tree and labels

it as S]lOWll [i1 figure 3. Each lllellll)er of tile falllt tI'('(, is labeled with a unique node IIIIlII[)(H'.

During the input dialog, l]lc llser is asked to identify tim eOlllle('liOll (if lhe fault trec melnl)ers

t)y specifying the node nmnhers. In this exmnple, the node numhers hal)pen to correspond

to the basic event comt>onent ID mmdmrs, also called the type numl)ers. Although the node

Illllll})CrS lllllSl })e lllli(tll(,, the t)asic evellt eotlll)Ollellt II)'s are 11ot FfK]llil'(.'(l tO })e lllliqlle, lhat

is, all the tmsic events can be the same type, say 1. A (_OlllpOllellt. lI) is a positive inleger thai

points to a dictionary description of lhe specified bask: event. As the user inputs the NANIE

fin' the COIll])oIlellt II), as prompted by HARP, the dictionary tile is alltOlllatically creat t,d in

ASCII forlllal and can t)(, viewed after the software l)rogralll tdri_c eOlllpleles (_xet'lltiOll. The

dictionary file contains the component name. the symbolic ['allure rate (_ for that component.

and any specified FEHM. During execution of ]_arpr!l_g, the user is asked to specit_ the failuw

distribution and its nmnerical values for each componenl. During initial model intml requested

by tdrit,c, the user is asked Io identi[v the COlllpOllellt ID for each basic event node and to

speci[v a replication factor, a posiliv,, integer. The llSe atld signiticance of the replication factor
aI'_' demonstrated in seclion 3.2.

Upon COml)letion of the firsl program tdri_c, the model has been converted to a Markov

chain, although this process is lransparent to the user. An ASCII file eontainiI_g the 5Iarkov

chain is created and identified as MODELNAME.INT. The corresponding Markov chain is shown

in figure ,i. The stat(_ 1,1,1 represents the system with each of the processors operating. With

tale _3, the third processor fails, and tim system enters the state with only the first two processors

framing, that: is, state 1,1,0. Likewise, with rate f12, the second processor fails, and the system

enters state 1.0,1. \\qth rale/_1, the first processor fails, and the system enters state 0,1,1. Now

from this state, one of two events can occur: either the second processor call fail or the third

processor can fail. The first event leaves the system in state 0,1,0 and the second event leaves the

system in state 0,0,1. Analogous transitions emanate from states 1,1,0 and 1,0,1. Once there are

two failures, (i.e., states 1,0,0; 0,1,0; and 0,0,1) the next failure crashes the systenI. Frolll these

states, F I is entered upon failure of the first processor, F2 when the second processor fails and

6 A better term is failure distribution; failure rate is used instea_i to simplify the inlm/.
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Node 5

Node 4

Node 1 ( Node 2 +Node 3

Figure 3. Three-processor fault tree representation.

)_1

;_3

,k3 .@

Figure 4. Markov chain generated from fault tree of figure 3.

F3 when the third processor fails. The program fiface is executed to create the sparse matrix 7

data structure format needed by the HARP engine. Finally, the engine itself is executed.

The three program dialogs for the example shown in figure 4 are presented in the following

sections. In the dialogs, a program request has no special prefix, and a user response is preceded

by the symbol >.

3.1.1. tdrive Dialog for Input of Fault Tree

In the following dialog, the program tdrive creates the file 3PFTI.INT that contains the

Markov chain generated from the input fault tree. The data in the 3PFTI.INT file are always

printed in ascending row-wise order with state names being positive integers. This output is

called SORTED output. 3PFT1.DIC lists the dictionary information. Both of these files are in

7 Matrix is A(t) as described in volume 1 of this Technical Paper. A matrix is sparse when most of its entries are zero.



appendix A as is 3PFT1.TXT, which contains tile fault tree input information. Tile dialog is as

follows:

$ tdrive

> f

Modelname?

> 3pftl

HARP---Version 7.0, February 1993

NASA Langley Research Center/Duke University

Program Tdrive

Defaults are Invoked by "CR", Inputs are Case Insensitive

Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

* Must be a legal filename without extension, .e.g., *

* 8 max. characters on a PC]

NAME for component ID I. Enter "/d" or "done" if finished.

> processorl

Symbolic failure rate?

> lambdal

Component FEHM?

> none

* Avoid using special characters *

* Numerical values are requested in fiface *

* and harpeng. Avoid using special characters *

* such as $, _, etc. *

Default Selected: FEHM Model set to "NONE"

Continue => Y Reenter => N

> y

NAME for component ID

> processor2

Symbolic failure rate?

> lambda2

Component FEHM?

> none

Default Selected: FEHM Model set to "NONE"

Continue => Y Reenter => N

> y

NAME for component ID 3.

> processor3

Symbolic failure rate?

2. Enter "/d" or "done" if finished.

9
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> lambda3

ComponentFEHM?
> none

Default Selected: FEHMModelset to "NONE"

Continue=> Y Reenter=> N

> y

NAMEfor componentID 4. Enter "/d" or "done" if finished.

> done

Fault Tree Description.

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.
Basic event node i:

ComponentID? * HARPassociates an integer with each component *
• nameshownin the modelname.dicfile to simplify *

• the codeandto simplify basic event specification *

> 1

Replication factor? * Whenbasic events have the samefailure rate symbol, *

• the specification of a replication factor greatly *

• simplifies the HARPcreated Markovchain model *

> 1

Summary:Basic event node I: I of component1
Continue => Y Reenter=> N, (Default = Y)

> y

Enter "/d" or done" for gate/box entry, 7 for dictionary,

or "/X" to correct input error.

Basic event node 2:

Component ID?

> 2

Replication factor?

> 1

Summary: Basic event node 2: 1 of component 2

Continue => Y Reenter => N, (Default = Y)

> y

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.

I0



Basic event node 3:

ComponentID?

> 3

Replication factor?
> 1

Summary:Basic event node 3: I of component3

Continue=> Y Reenter=> N, (Default = Y)

> y

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.

Basic event node 4:

Component ID?

> done

Enter "/X" to correct input error, ? for help.

Node 4: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs: * Specify the actual number of arcs, not *

* the replicated number, i.e., for *

* Replication factor =3, specify one arc *

> 3

Enter ID number of source node for arc

> 1

Enter ID number of source node for arc

> 2

Enter ID number of source node for arc

> 3

SUMMARY: Node 4: TYPE AND

Continue => Y Reenter => N, (Default = Y)

> y

I: * Its a good idea to first *

draw a sketch of the tree *

* labeling the nodes

* numerically,see fig. 12,

Users Guide, vol.l. *

2:

3:

3 INPUTS: 1 2 3

Enter "/X" to correct input error, ? for help.

II



Node

Enter gate type:
> fbox

Enter ID numberof source nodefor arc

> 4

Summary:FBOXnode 5: INPUT: 4
Continue => Y Reenter=> N, (Default = Y)

> y

TRUNCATE the model after how many failures?

5: Gate or Box or Fbox (Enter "FBOX" as last node)

I:

> 0

Default selected: no truncation.

Include state tuples as comments in .INT file?

* State truncation bounds, *

* see sec. 3.4.2, vol. I *

* tdrive will convert the *

* fault tree into an equi- *

* valent Markov chain. State *

* tuples identify each state *

> n

Default selected: No state tuple notation.

FT2MC: Converting fault tree to Markov chain .

FT2MC: Successful completion

8 internal Markov chain states generated

7 unique nonfailure states

3 failure states generated for HARP engine

Model information in file: 3PFTI.INT

Dictionary information in file: 3PFTI.DIC

3.1.2. fiface Dialog for Fault Tree Model

* 7 merged operational *

* states were formed *

HARP---Version 7.0, February 1993

Program FIFACE

12

$ fiface

The next step is to run fiface. Its purpose is twofold: (1) fiface puts the Markov chain into

the correct format needed by the HARP engine (a sparse matrix format with entries in column

order), and (2) fiface adds any necessary coverage information. In this example, only the first
task is applicable because no FEHM's were specified. The output files of fiface are 3PFT1.MAT,
which contains the matrix and 3PFT1.SYM, which contains symbolic information. These files

are also in appendix A. The dialog is as follows:



Modelname?

> 3pftl

Matrix and symbol table information in: 3PFTI.MAT

3.1.3.

* fiface created the *

* transition matrix , *

* see Users Guide, vol.l, *

* section 1.3 *

harpeng Dialog for Fault Tree Model Solution

Next, we runth(_engin(_harpengto obtainthesolutiontothe problenl. Tile resultsare stored

in filc 3PFTI.RS1 and are giveninappcndix A. The(lialog is as folh)ws:

$ harpeng

HARP .......................

- The Hybrid Automated Reliability Predictor -

Release Version 7.0 ..............

February 1993 ..................

Use an echo file from a previous run as the input file? y/n ?

> no * An echo file is automatically written by *

• the execution of harpeng which contains *

• all the input data. This file may be *

• altered with a text editor for multiple *

• executions of harpeng when the model *

• configuration is unchanged *

Modelname ?

> 3pftl

Output files:

3PFTI.RSI

3PFTI.PTI

-- Reliability and state probabilities

-- Graphics information

..... WORKING .....

3PFTI.INP -- Input file or echo of input

Declare meaning for symbol LAMBDAI ( "?" or "help" )

> 1

For constant failure rate: LAMBDAI

Nominal value?

> .001

(+/-) Variation? (Must be less than nominal. ,v- will allow reentry. )

* Variation not asked in PC 16-bit HARP version *

13



> 0

Declaremeaningfor symbol LAMBDA2
> 1

For constant failure rate: LAMBDA2

Nominalvalue?

>

( "7" or "help" )

.001

(+/-) Variation7 (Mustbe less than nominal. "?" will allow reentry. )

Variation not askedin PC16-bit HARPversion

> 0

Declare meaningfor symbol LAMBDA3 ( "?" or "help" )

> 1

For constant failure rate: LAMBDA3

Nominalvalue?

> .001

(+/-) Variation? (Mustbe less than nominal. "?" will allow reentry. )
Variation not askedin PC16-bit HARPversion

> 0

Redefine symbol(s) meaningsor their values, or correct an error (y/n)?

> n

Mission time? (Hours):

> i0

Mission time reporting interval? (Hours):

> 10

ComputeParametric Boundsusing SIMPLEModel?(y/n) ? no
Boundsdisallowed in PC16-bit HARPversion

Calculating State Probabilities...

0 Reports from the GERKODEsolver. • Thenon-stiff ordinary

differential solver reports

anyunusual long solutions

Please select:

1: Scroll through the result file?
2: Solve samemodelwith newmission time or near-coincident fault rates, etc.?

S: Redefine symbol(s) meaning(s)and re-run model?

4: Exit the program?

> 4
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3.2. Variation of Three-Processor System Fault Tree

In the previous example, A1 = A2 = A3 indicates that the processors are statistically identical

components. Because we are not concerned with which processor fails (merely with the fact that

a fault has occurred), we can lump tile processors into a single basic event as demonstrated in

figure 5(a). The notation 3 * 1 designates three replications of dictionary component type 1 (the
processors in this case). The tdr'ivc program converts the fault tree to the Markov chain shown

in figure ;5([/). Notice that the number of states in the Markov chain is reduced from 10 in the

previous example to 4. State 3 represents the flflly operational system. With failure rate 3 * k

(the coefficient 3 is the number of processors available), the system makes a transition to state 2

where only two processors are available. Likewise, with rate 2, k the system goes to state 1

with only one processor and finally, the failure of the remaining processor with rate A brings the
system down.

1

+
(a) Fault tree with replicated events.

(b) Corresponding Markov chailL

Figure 5. Three-processor system.

Figure 6 shows which states are being merged in the Markov chain generated from the fault
tree of the previous example.

• • F -- -I • •

L J L __ __ J L

3 2 1
t'rocess_)rs Processors P r(messor System
available available available failed

Figure 6. Merging of three-processor Markov chain.
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The three pr()gram dialogs [or the merged fault tree example are presented in the following

sections. As in the previous example, and for all subsequ('nt examph',_, th,' oulput fih's are listed

in appendix A.

3.2.1. tdrive Dialog for Input of Merged Fault Tree

$ tdrive

HARP---Version 7.0, February 1993

NASA Langley Research Center/Duke University

Program Tdrive

Defaults are Invoked by "CR", Inputs are Case Insensitive

Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

> f

Modelname?

> 3pft2

NAME for component ID

> processor

Symbolic failure rate?

> lambda

Component FEHM?

> none

Default Selected:

Continue => Y Reenter => N

> y

NAME for component ID

> done

I. Enter "/d" or "done" if finished.

FEHM Model set to "NONE"

2. Enter "/d" or "done" if finished.

Fault Tree Description.

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.

Basic event node i:

Component ID?

> 1

Replication factor?

> 3

Summary: Basic event node I: 3 of component 1

Continue => Y Reenter => N, (Default = Y)
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> y

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.

Basic event node 2:

Component ID?

> done

Enter "/X" to correct input error, ? for help.

Node 2: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs:

> 1

Enter ID number of source node for arc I:

> 1

SUMMARY: Node 2: TYPE AND , I INPUTS: 1

Continue => Y Reenter => N, (Default = Y)

> y

Enter "/X" to correct input error, ? for help.

Node 3: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> fbox

Enter ID number of source node for arc I:

> 2

Summary: FBOX node 3: INPUT: 2

Continue => Y Reenter => N, (Default = Y)

> y

TRUNCATE the model after how many failures?

> 0

Default selected: no truncation.

Include state tuples as comments in .INT file?

> n

Default selected: No state tuple notation.

FT2MC: Converting fault tree to Markov chain .

FT2MC: Successful completion

4 internal Markov chain states generated

3 unique nonfailure states

i failure states generated for HAKP engine

Model information in file: 3PFT2.INT

Dictionary information in file: 3PFT2.DIC
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3.2.2. fiface Dialog for Merged Fault Tree Model

$ fiface

Modelname?

> 3pft2

HARP---Version 7.0, February 1993

Program FIFACE

Matrix and symbol table information in: 3PFT2.MAT

3.2.3. harpeng Dialog for Merged Fault Tree Solution

After executing harpeng, the user should compare the results fib 3PFT2.RS1 with the

previous example 3PFT1.RS1. As expected, the unreliability values for each are identical because

A1 = A2 = A3. By merging the states, the user can greatly reduce the size of the corresponding

Markov chain and make analysis much faster (and if the model is large, can even make an

otherwise intractable solution possible).

$ harpeng

Use an echo file from a previous run as the input file?

> no

Modelname ?

> 3pft2

Output files:

3PFT2.RSI

3PFT2.PTI

HARP .......................

- The Hybrid Automated Reliability Predictor -

............ Release Version 7.0 .............

February 1993 .................

y/n ?

-- Reliability and state probabilities

-- Graphics information

WORKING

3PFT2.INP -- Input file or echo of input

Declare meaning for symbol LAMBDA ( "?" or "help" )

> 1

For constant failure rate: LAMBDA

Nominal value?

> .001

(+/-) Variation? (Must be less than nominal.

> 0

Redefine symbol(s) meanings or their values, or correct an error (y/n)?

> n

18
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Mission time? (Hours):
> 10

Mission time reporting interval? (Hours):

> I0

Compute Parametric Bounds using SIMPLE Model? (y/n) ? n

Calculating State Probabilities...

0 Reports from the GERK ODE solver.

Please select:

i: Scroll through the result file?

2: Solve same model with new mission time or near-coincident fault rates, etc.?

3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?

> 4

3.3. Three-Processor System Input as a Markov Chain

We now input the three-processor system as the Markov chain of figure 7. The description of

tile chain is given in the previous example. In program tdrivc, the dictionary need not be entered

for Markov chains that do not have repair nor fault han(tling. (The dictionary must be entere(l

for a fault tree, a Markov chain with repair, or a Markov chain with coverage.) Tile program

fiface is executed to create the sparse matrix data structure forlnat neede(t by the HARP engine.

The engine, as |)efore, is run to solve the too(tel. Output files are given in appendix A.

}:iguw 7. Thrce-proc_ssor system input a_ a \L_rkov chain.

For the Markov chain input, the user is asked some different questions than h)r the fault.

tree input. When a fault trek is converted to a Markov chain in tdrive, the outtmt is always

printed in ascending row-wise order with state names being positive integers. This outpul is

called SORTED output and is printed in the MOI)ELNAME.INT file. For Markov chain inlml.

the user has tile choice of (_ntering data ill a SORTED or UNSORTED manner. If the entries

are UNSORTED, it means one of two things; either the state names are symbolic (STATE1, F1,

3P, etc.) or the entries are not in r<)w-wise ascenlling integer order. Ad<titionally, an instruction

is posted that tells the user that the first state listed must be the initial state of the system. If

this is not the case, the sohltion results can be incorrect. Next, the user is asked if the model is

to be solved AS IS. The AS IS option means that there are no fault/error handling models for

any of the components and only the FORM is to be solved.
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3.3.1.

$ tdrive

tdrive Dialog for Input of Three-Processor System

HARP---Version 7.0, February 1993

NASA Langley Research Center/Duke University

Program Tdrive

Defaults are Invoked by "CR", Inputs are Case Insensitive

Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

> mc

Modelname7

> 3pmc

Will any FEHMs be used? (y/n) 7 n

Will state names be in row-wise order listed as ascending integers

beginning with 17 (i.e., no symbolic input for state names).

(y/n default = n ) 7 n

The first state entered must be the initial state,i.e., for the

line -- S1 $2 RATE .... SI" is the initial state.

Begin Markov chain entry with "read filename", or simply list

the transitions using the format: Sl S2 Rate_expression

(Enter "/d" or "done", "7" or "help")

Begin:

> 3 2 3*lambda

> 2 1 2*lamOda

> 1 F1 lambda

> done

Model information in file: 3PMC.INT

Dictionary information in file: 3PMC.DIC

3.3.2. fiface Dialog for Three-Processor System

Now run tile fiface program as before. This time the user is asked whether the model ha,s

repair (for this example, there is no repair). In addition, the user is asked whether any active
state probabilities are desired. Thus, tile user can obtain ttle probabilities for any state, not just

the failure states (as in the fault tree, SORTED, input). After running fiface, use a text editor
to compare the contents of the 3PFT2.MAT file from this run with that of the previous example

(3PFT2.MAT from section 3.2). They are the same. It serves to reason that the results files

(3PFT2.RS1) are also the same. Compare the results files in appendix A. The harpeng run is
not listed here because it is identical to the previous run. The dialog is as follows:
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$ fiface

HARP---Version 7.0, February 1993

Program FIFACE

Modelname?

> 3pmc

Model is to be solved "as is"

Matrix and symbol table information in: 3PMC.MAT

Does this model have repair? - y/n:

> n

PLEASE NOTE: THE FIRST STATE IN THE .INT

FILE IS CONSIDERED THE INITIAL STATE OF THE MODEL.

Do you want to see the state probabilities for any active states7

This information is automatically printed for any failure states. (y/n)?

> n
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Chapter 4

Fault/Error Handling Model (FEHM)

4.1. Full Model

Let us expand our three-processor example. (See fig. 7.) Each processor in states 3, 2, and 1

still fails at a constant rate )_. However, upon processor failure, the system enters tile Fault

Active state. (See fig. 8.) In this state, the system attempts to detect tile fault with a constant
detection rate h. If tile fault is detected with probability p, the faulty processor is removed and

tile system enters the state with one fewer processor. Otherwise, if the fault goes undetected, it

propagat.es through the system causing systeln failure with probability 1 -p. This single-point

failure state is recognized as state FSPF, which is a failure due to a single-point fault. If all

faults are detected, we eventually exhaust our supply of processors entering the failure state F1.

llX.( Jt ±

5*(L_ -p)

Figure 8. Three-processor system with actiw' faults.

Next, we generalize and replace the Fault Actiw_ state shown in figure 8 with a box, perhaps

containing many states, as shown in figure 9. Each box contains the "fast" transitions of fault

recow.'ry and hence is referred to as the FEHM. The FEHM captures in a few parameters the

sequence of ew.'nts that. occur within the syslem once a fault occurs. Its general structure is a

single.-entry (up to) four-exit model, which is entered when a fault occurs. The exits represent

possible outcomes o[ the attempted system recovery. As demonstrated in figure 9, the FEHM

can I)e inserted only between operational states.

\

\ /

Figure 9, Three-processor system with FEHM's inserted.

In general, what is inside the box may or may not be a single Markovian state, which is the

Fault Active state shown in figure 8. It can be as simple or as complex as the user wants. For the

moment, it does not matter what is in this box. What is important is that we analyze the FEHM

to determine the probability of successful permanent coverage-- that is, detecting the fault and

reconfiguring with one fewer processor. Accordingly, with the complementary probability, the
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systemfails. Tile path takenill the caseof a successfulreconfigurationis the C exit from the

FEHM and the path to system failure is the S exit. For this example, the contents of the FEHM

are represented by the Fault Active state of figure 8. Tile structure of tile FEHM for this example
is shown in figure 10.

Fault Occurs

FEHM
C

Permanent Coverage

S
Single-Point Failure

Figure 10. Partial structure of HARP FEHM.

As shown in figure 11, tile FEttM box has been reduced to a branch point. The parameter c

(ill this case, c = p) represents tile probability of successful detection and reconfiguration. The

complementary probability parameter leading to state FSPF is denoted by an s (in this case,

,s = 1 - p). The overall model that is solved to predict the reliability of the system is shown in
figure 12.

Figure 11. Replacing FEtlM's by a branch point.

2*A * c *@ A ,@

Figure 12. Instantaneous jump model of three-processor system.

4.2. Development of Instantaneous Jump Model

The reduction from tile full model of figure 8 to the instantaneous jump model of figure 12

is the general procedure tIARP uses to solve large and stiff models. Models, such as figure 8,

with many orders of magnitude between tile slowest and fastest rates are called stiff systems.
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Weseparatetile systemalongtemporallines(with respectto occurrencetilnes)accordingto the
relativemagnitudeofthestatetransitionrates.Thestatesrepresentingfailures(slowtransitions)
aregroupedinto tile FORM and tile fast recoverystatesare groupedinto the FEHM (also
referredto asthe coveragemodel). This is the conceptof behavioraldecomposition(refs.6
and 7). Tile FEIIM is solvedin isolation,reducedto a branchpoint, and insertedinto the
FORM,asshownin the example.

Behavioraldecompositionisusednotonlyfor inodelsolutionbut alsofor modelspecification.
The userentersthe FORM and FEHM separatelyaim thus is shieldedfrom specifyinga huge
overallmodel. Note that the combinedmodel,like that of figure8, which is both stiff and
potentially large,is ne'c,_:r conslructed by' tho user nor generated by HARP. Tile solution is

designed to use a good decomposition apl)roximation so that a small nonstiff too(tel is solved

rather than a large stiff model. This largeness avoidanc(, t.ectmiqu(_ is the ha,sis of HARP.

The user shouht ensure that adequate separation (at least two orders of magnitude) occurs

between the parameters in the FORM and FEHM models. Otherwise, the results produced by

tIARP (:an produce an unacceptat)le conservative result. In the event such a condition results,

HARP issues a warning message to that effect. The degree of acceptable conservative error is

a function of the fidelity of the model, the accuracy of the input data (which is typically in

error t)y at least one order of magnitude), user requirements, and other less important factors.

Engineering judgment is the t)rinm consideration when ally modeling data are accepted.
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Chapter 5

Modeling Permanent Faults

Assume that the boxes in figure 9 now represent a subset of the CARE III single fault

model (ref. S) to demonstrate the idea of permanent faults. A fault is permanent if its faulty

manifestation persists for a long time. The time period is relative' to the criticality of the

application, so for a flight control application, a long time would be on the order of tcnlhs _f a

second. For a system such a.s that shown in figure 9. the best action upon (h_tecting a t)rocessor

with a permmwnt fault is to discard the processor. Thus, Ill(, system survives an(t funclions

with ()lie less processor. A portion of the CARE III model is 5]lO'_VIl ill figure 13.

Figure 13. Portion of CARE III singh' faulI model.

The fault is (tetecte(t with constant rate _5. Once detected, tile system removes the faully

unit and continues processing. Before detection, the fault ('_m produce an error with COllS/allt

rate p. ShouI(i the error be detecte(t with t)robability q, the presence of the fault is recognize(l

and recovery can still occur. This partial CARE model a.ssutnes that once detected, the fault is

covered all the time. This assumt)tion is demonst, rate(t by the parameter PA. Should the error

not be detected, it propagates through the system model aim causes system faihlre. This system

failure is a conservative modeling assumption and is made to simplify the model because these

failure conditions are typieally improbable. The Permanent Fault state represents the (' exit

from the FEHM leading to a degraded state, and the FAIL state corresponds to the S exit

leading to the FSPF state.

For this examt)le tile FEHM probabilities (ref. 7), when replaced by a branch point, are

(5 p

- + 5-_pqc 6+p

(probability that we take the path from the Active Fault state directly to the Detected state

multiplied by PA) + (probability of taking the path to Active Error multiplied by the probability

of going from Active Error to Detected multiplied by PA) and

P (1 q)S --

_+p
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(probability of taking path from Active Fault state to Active Error state multiplied by tile

probability of going from Active Error to FAIL state), ttowever, the }tARP user does not

have to calculate these coverage factors; they arc automatically computed by HARP based on

user-specified parameters.

Using tdrive to input this example in }tARP, we specify the fault tree or Markov chain as

in previous examples. However, we now enter the FEHM model in the dictionary. We present

this example as a fault tree; however it can just as simply be entered as a Markov chain. (See

section 3.3.) As previously noted, the *.DIC, *.TXT, *.INT, *.MAT, *.SYM, and *.RS1 files

are given in appendix A.

5.1. tdrive Dialog for Input of CARE III Permanent Single Fault
Model

$ tdrive

HARP---Version 7.0, February 1993

NASA Langley Research Center/Duke University

Program Tdrive

Defaults are Invoked by "CR", Inputs are Case Insensitive

Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

> f

Modelname?

> 3pcarel

NAME for component ID I. Enter "/d" or "done" if finished.

> processor

Symbolic failure rate?

> lambda

Component FEHM?

> care

FEHM f ilename?

> carel.fhm

File CAREI.FHM does not currently exist

Create now? (y/n) ? y

* CARE III SINGLE FAULT MODEL (MARK0V) *

****************************************

All time parameters should be given in terms of HOURS. If you need help

or additional information, type "HELP" when prompted.

Permanent fault probability?
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>I

Enter the permanent fault model parameters (alpha and beta are both zero,

as is PB):

Delta? (rate - events/hour)

> 360

Epsilon? (rate - events/hour)

> 3600

B_ho? (rate - events/hour)

> 180

PA? (0 <= PA <= I):

> 1.0

Q? (0 <= Q <= 1):

> .999

FEHM information for this component is stored in file CAKEI.FHM

Continue => Y Keenter => N

>y

NAME for component ID 2. Enter "/d" or "done" if finished.

> done

Define interfering component types for near-coincident faults? (Y/N)?

> no

[Not asked in PC 16-bit HAKP version.

It's significance is explained in the

section on near-coincident faults.]

Fault Tree Description.

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.

Basic event node i:

Component ID?

>I

Keplication factor?

>3

Summary: Basic event node I: 3 of component 1

Continue => Y Reenter => N, (Default = Y)

>y

Enter "/d" or done" for gate/box entry, ? for dictionary,
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or "/X" to correct input error.

Basic event node 2:

Component ID7

> done

Enter "/X" to correct input error, ? for help.

Node 2: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs:

>I

Enter ID number of source node for arc i:

>i

SUMMARY: Node 2: TYPE AND , i INPUTS: 1

Continue => Y Reenter => N, (Default = Y)

>y

Enter "/X" to correct input error, ? for help.

Node 3: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> fbox

Enter ID number of source node for arc i:

>2

Summary: FBOX node 3: INPUT: 2

Continue => Y Reenter => N, (Default = Y)

>y

TRUNCATE the model after how many failures?

>0

Default selected: no truncation.

Include state tuples as comments in .INT file7

>n

Default selected: No state tuple notation.

FT2MC: Converting fault tree to Markov chain .

FT2MC: Successful completion

4 internal Markov chain states generated

3 unique nonfailure states

I failure states generated for HARP engine
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Model information in file: 3PCAREI.INT

Dictionary information in file: 3PCAREI.DIC

5.2. fiface Dialog for CARE III Permanent Single Fault Model

$ fiface

HARP---Version 7.0, February 1993

Program FIFACE

Modelname?

> 3pcarel

Matrix and symbol table information in: 3PCAREI.MAT

Which near-coincident fault rate files are to be created?

Enter:

N for NONE (ignore near-coincident faults)

A for ALL (all near-coincident faults are fatal)

S for SAMe (only faults of same type interfere)

U for USeR defined interfering component types

You can type combinations like AU, ASU, SA etc.

Combinations of "N" with A, U or S are not allowed.

[Not asked in PC 16-bit HARP version.

It's significance is explained in the

section on near-coincident faults.]

> no

Not creating any near-coincident fault rate files

5.3. harpeng Dialog for Solution of CARE III Permanent Single
Fault Model

$ harpeng

................. HARP

- The Hybrid Automated Reliability Predictor -

............ Release Version 7.0

.............. February 1993 .................

Use an echo file from a previous run as the input file? y/n ?

> no

Modelname ?

> 3pcarel

Output files:
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3PCAREI.RS1 -- Reliability and state probabilities

3PCAREI.PTI -- Graphics information

..... WORKING .....

3PCAREI.INP -- Input file or echo of input

Declare meaning for symbol LAMBDA ("?" or "help" )

>I

For constant failure rate: LAMBDA

Nominal value?

> 0.001

(+/-) Variation? (Must be less than nominal.

>0

Redefine symbol(s) meanings or their values, or correct an error (y/n)?

> no

Mission time? (Hours):

> i0

Mission time reporting interval? (Hours):

> I0

Calculating State Probabilities...

There were 0 Warnings from the GERK ODE solver.

Please select:

i: Scroll through the result file

2: Solve same model with new mission time or near-coincident fault rates, etc.

3: Redefine symbol(s) meaning(s) and re-run model

4: Exit the program.

>4

"?" will allow reentry. )
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Chapter 6

Modeling Transient Faults and
Transient Recovery

Until now, we have, assume(t that the only faults to be modeled are permanent. However.

certain faults can be lemt)orary in nature and not cause permanent physical damage but still

result in software errors. These faults are called tr(m,sicnt faults and the effect on the FORM

of such faults is represented in figure 14 as the transient restoration transition. Once a fault

is diagnosed as transient and recovery froin such a fault is successflfl, the system returns to an

operational mode without reconfiguring the syslem, thai is, a hardware module is not remow_d

from the system. Transient faults can be modeled I)y using the Direct ARIES, CARE llI,

and ESPN FEttM's. These models allow the user to model specific system behaviors resulting

from the occurrence of transient faults. The particular choice of FEHM depends on the system

application and its susceptit)ility to transients. The other FEHX['s, the prot)ability and moments,

probability and distributions, and probability and emI)irical data, can also 1)e used to account

for transient faults, but no FEHM modeling detail is allowed.

Fault Occurs

I{
._____

Transient
Restorat ion

FEH[M
C

P('.rlnaIl(mI

Cov(_ra_('

S

Single-Point Failure

Figure 1,I. Partial structure of HARP FEtIM.

The incorporation of transient faults in our three-processor example is shown in figure 15.

While this figure appears similar to figure 9, the boxes now show a transition back to the state

from which the box was entered, corresponding to transient restoration.

/" F

Figure 15. Three-processor system with FEHM's showing the C, S, and R exits.
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6.1. Direct Coverage Values Model

If the user chooses, the coverage values can be input directly either in the .fi.face program or

t,he harpeng program. In this case the FEHM type is VALUES. Wh(m Wompted for the FEHM

type in program tdr'ive, the user should respond with the kcyword VALUES. No input file is

used; instead, in fiface the user is given the option of entering the specific values for (7 and R.

If they are not entered in fiface, they are requested in harpen 9. The value for S is calculated as

(1 -C- R).

6.2. ARIES Transient Recovery Model

To denlonstrate the modeling of transient faults, assume the boxes in figure 15 now represent

the ARIES model (ref. 9). (See fig. 16.) ARIES is a phased recovery model that allows the user

to specify how many phases comprise the recovery procedure.

Fault

Occurs

PE 1 = CR

(I-CR) PR I
PF

Phase

NP

PR i

PENp+ I

System Normal
Crash

Fault

c

R

Figure 16. ARIES transient fault recovery model.

In each phase of the recovery, the duration of which is constant, the system attempts

recovery. If successful, the system returns to the Normal Processing state without discarding

any components. If the recovery in a particular phase is unsuccessful, the next phase attempts
to locate and recover from the fault. If all phases are ineffective, the fault is assumed to be

permanent. We discard the faulty component and continue running with one fewer component

(provided that we still have enough to leave the system operational). If the fault is a critical
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one from whichthe systemasa wholecannotrecover,the SystemCrashstate is enteredby
the transitionarc labeled(with probability) 1- CR. This state represents the S exit from the

FEHM and the "Permanent Fault Recovery" state represents the C exit. The transient faults,

leaving the FEHM via exit R, are realized by state Normal Processing.

The exit probability calculations s for the ARIES model are as follows:

c = (PENp + 1X c°v)

where

NP

s =(1 -- CR)+(PENP+IX1 - coy)+ _ PF i
i=l

NP

r = _ PRi
i=l

PF i -_ PEi(1- exp-P Ti)

These calculations are performed by the HARP program and not by the user. The user-input

data for the ARIES model are delineated in the following example as annotations enclosed in

square brackets. For this example, we provide only the coverage model input. Like the previous

example, the model is input in program tdrive. Because the output files from tdrive and fifacc are

similar to previous runs, the harpeng output file 3PARIES1.RS1 and the FEHM file ARIES.FHM

are listed in appendix A.

6.3. tdrive Dialog for Input of ARIES Model

*******$****$***************************

* ARIES TRANSIENT FAULT RECOVERY MODEL *

,_***********************************_**

Enter number of recovery phases (int, max I0): [NP]

>3

Transient fault probability?

> .9

Transient fault mean duration? (in seconds):

> . 005

Catastrophic fault probability, given that a fault occurs?

> .001

Duration of each recovery phase? (seconds):

[I-CR]

[Ti, deterministic time,

conservative assumption]

Phase 1:

> .8

8 Parameter coy is an enhancement to the original ARIES FEHM model in recognition that after the system determines
the fault is permanent, some recovery action is necessary. The success of that action is specified by cov, a probability.

33



Phase 2:

> .2

Phase 3:

> .I

Recovery effectiveness probability of each phase? [PR(i)]

Phase i:

> .8

Phase 2:

> .7

Phase 3:

> .5

Failure rate of the recovery system hardware (in seconds): [p]

0.0

Coverage of permanent fault recovery procedure: (probability) [cov]

> .85

FEHM information for this component is stored in file ARIES.FHM

6.4. CARE III Transient Single Fault Model

Tile CARE III single fault model can be expanded to model transient and intermittent

faults. As figure 17 shows, permanent faults are still modeled in the same manner as

previously described, with a = _ = PB ----0. (The user is never permitted to enter these default

parameters.) For the transient model, the fault can now be either active or benign. Once

the fault enters the Benign Fault state, it is assumed to have disappeared before the system

experienced any ad _erse effects (13 -- 0). The disappearance of the transient signifies that the

FEHM exit R is being taken. Again, in the Active Error state, the transient can go benign.

If the error is detected (with probability q), the faulty element is removed from service with

probability PB.

With the complementary probability, the fault is assumed to be transient and the element

is returned to service without reconfiguring the system. If the error is detected from the

Active Error state, the faulty element is removed from service with probability PA. With the

complementary probability, we remain in the FEHM because the fault is still present. Note, the

two Detected states and the Benign state (for the transient model) are instantaneous states, as

denoted by the dotted transitions leaving them. By setting c_ > 0 and fi > 0, we can also model

intermittent faults. (See the following section.)

The next section lists the dialog for the input of the coverage model in program tdrive: The

FEHM file 3PCARE2.FHM and the harpeng output file 3PCARE2.RS1 are listed in appendix A.

Using the CARE FEHM example to model transient faults, we let the parameter a be large in

relation to the values of p and 6. Once again, the calculation of the exit probabilities C, R, and S

is performed automatically by HARP, and each occurrence of the CARE III FEHM is replaced

by a three-way branch point.
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6.5. tdrive Dialog for Input of CARE III Transient Single Fault
Model

****************************************

* CARE III SINGLE FAULT MODEL (MARKOV) *

All time parameters should be given in terms of HOURS. If you need help

or additional information, type "HELP" when prompted.

Permanent fault probability?

>0

Intermittent fault probability?

>0

Transient fault probability is: i.0000000000000

Enter the transient fault model parameters

(alpha is positive but beta is zero):

Alpha? (rate - events�hour)

> 36000

Delta? (rate - events/hour)
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> 360

Epsilon? (rate - events/hour)

> 3600

Rho? (rate - events/hour)

> 180

PAT (0 <= PA <= i):

> .5

PB? (0 <= PB <= i):

> .5

Q? (0 <= Q <= 1):

> .9

FEHM information for this component is stored in file CARE2.FHM

36



Chapter 7

Intermittent Faults in Coverage Model

7.1. Overview

A third class of faults known as intermittent faults can be modeled. These faults are

particularly insidious as they are always present but not always active. In the active state,

the intermittent fault causes the system to operate incorrectly; however, in the benign state, the

intermittent fault does not affect the operation of the system. The fault can switch between the

active and benign states at any time (c_ > 0 and _ > 0). The FEHM model, like in the transient

case, has the C, S, and R exits. (See fig. 14.) The C exit is used when the intermittent is treated

as a permanent fault, the S exit is used when the fault has produced an error from which the

system cannot recover, and the R exit is used when the intermittent is treated as a transient.

(That is, the time between activations of the intermittent fault can be long an(] results in the

incorrect assumption that the fault is a transient.)

The CARE III single fault model again provides us a good example for which we provide

the coverage model input. In previous examples demonstrating the CARE II[ FEHM model,

we stated that the particular fault type that we are modeling is going to occur 100 percent of

the time; that is, the model is the permanent fault. This model is selected when answering the

following questions:

"A Fault is Permanent with what probability? "

"A Fault is Intermittent with what probability? "

For the permanent model, we responded 1.0 to the first question, and for the transient model,

we responded 0.0 to both questions (thus making the transient model a default of 1.0). Rather

than determining that only one type of fault is likely', perhaps we have stu(tied our system and

found that all three fmfit types are possible. We can reflect this in our model during the input.

As in the previous two examples, the FEItM file 3PCARE3.FItM and the harpcng outtmt file

3PCAREg.RS1 are given in appendix A.

7.2. tdrive Dialog for CARE III Intermittent Single Fault Model

**_****_****_****_*_***_***_**********_*

* CARE III SINGLE FAULT MODEL (MARKOV) *

*$*$**$*$$****$$$******$****$***$$*$*$$*

All time parameters should be given in terms of HOURS. If you need help

or additional information, type "HELP" when prompted.

Permanent fault probability?

> .2

Intermittent fault probability?

> .2

Transient fault probability is: 0.60000000000000
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Enter the permanent fault model parameters (alpha and beta are both zero,

as is PB):

Delta? (rate - events/hour)

> 300

Epsilon? (rate - events/hour)

> 3600

Rho? (rate - events/hour)

> 240

PA? (0 <= PA <= I):

>i

Q? (0 <= q <= i):

> .999

Enter the intermittent fault model parameters:

Alpha? (rate - events/hour)

> 2100

Beta? (rate - events/hour)

> 3000

Delta? (rate - events/hour)

> 360

Epsilon? (rate - events/hour)

> 3600

Kho? (rate - events/hour)

> 180

PA? (0 <= PA <= I):

> .9

PB? (0 <= PB <= I):

> .i

Q? (0 <= Q <= I):

> .999

Enter the transient fault model parameters

(alpha is positive but beta is zero):

Alpha? (rate - events/hour)

> 36000

Delta? (rate - events/hour)

> 180
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Epsilon? (rate - events/hour)

> 3600

Kho? (rate - events/hour)

> 180

PA? (0 <= PA <= 1):

> .5

PB? (0 <= PB <= 1):

> .5

Q? (0 <= Q <= 1):

> .999

FEHM information for this component is stored in file CARE3.FHM
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Chapter 8

ESPNFEHM
One additional coverage model is available to the user, an Extended Stochastic Petri Net

(ESPN). (See refs. 10 to 13.) As shown in figure 18, this FEHM models three aspects of a fault

recovery process: physical fault behavior, transient recovery, and permanent recovery.

S _

Fault

TI

t

Permanent [ntermittenl

T2

T6

Error

T9

Delected

l-q

Point

T5

Counter

TIO k

TII

Figure 18. HARP ESPN single fault model.
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Thefault behaviormodelcapturesthe physicalstatusof the fault, suchaswhetherthefault
isactiveor benign(if permanentor intermittent),or whetherthe fault still exists(if transient).
Oncethefault isdetected,it is temporarilyassmnedto betransient,andanappropriaterecovery
procedurecancommence.Thetransientrecoveryprocedurecanbeattemptedmorethan once.
If the detection/recoverycycleis repeatedtoo many times,a permanentrecoveryprocedure
(reconfiguration)is invoked.If the reconfigurationis successful,the systemis againoperating
correctly,althoughin a somewhatdegradedstate.

8.1. ESPN Specification

The inherent concurrency between the actual fault behavior and tile system's fault/error

handling behavior can be captured effectively in terms of an ESPN (ref. 14). Recall tile

composition of a Petri net (PN) bipartite graph: (ref. 15) a set of places P (drawn as circles), a

set of transitions T (drawn as bars), and a set of directed arcs A, which connect transitions to

places or places to transitions. Places can contain tokens _J(drawn a,s dots). The state of a PN,

called the PN marking, is defined by tile number of tokens contained in each place.

A place is an input to a transition when an arc exists from the place t.o the transition, an¢t

a place is an output from a transition when an arc exists fl'om tile transition to the place. A
transition is enabled when each of it.s input places contains at least, one token. !"nable¢t transitions

can fire, by removing one token from each input place and placing one token in each output plac¢_.

Thus, the firing of a transition causes a change of state (produces a different marking) for the
PN.

A Stochastic Petri Net (ref. 16) is obtained by associating with each Iransition a s(>-ealled

firing time. Once a transition is enabled, an exponentially distributed amount of time elapses.

If the transition is still enabled, it then fires. A Generalized Stochastic Petri Net (ref. 17) allows
immediate (zero firing time) a,s well as timed transitions, hmncdiate transitions are drawn as

thin bars, timed transitions as thick bars.

An ESPN allows firing times to belong to an arbitrary distribution. Some other exlvnsions

to Petri nets are considered here. An inhibitor arc from a place to a transition has a small

circle rather than an arrowhead at the transition. The firing rule is changed as follows. A

transition is enabled when tokens are present in all of its (normal) input places and no lokens
are present in tile inhibited input places. When the transitio_ tires, tile tokens are removed from

the normal input places and deposited ill the output places as usual, but tile number of tokens

in the inhibited input place remains zero.

A probabilistic are: from a transition to a set of output places deposits a token in one (and

only one) of tile places in tile set. Tile choice of which place receives tile token is determined by
tile probability labels on each branch of the arc.

A counter arc from a place to a transition is labeled with an integer value k. This the integer

value changes the firing rule such that a transition is enabled when tokens are present in all of

its (normal) input places and at lea,st k tokens are present in the counter input place. When the

transition fires, one token is removed from each normal input place, while k tokens are removed

from tile counter input place. Associated with a particular counter arc can be a counter alternate

arc, which enables an alternate transition when the count is between 1 and k - 1, inclusive. The

alternate transition can fire each time a token is deposited in the counter input place until

k tokens are present. The count remains unchanged by the firing of the alternate transition

because it removes no token from the counter input place. A counter alternate arc is labeled

with a k. Neither the counter arc nor the counter alternate arc are true extensions to Petri

9 A token is a marker that designates flow of model processes.
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nets,asbothcanbe realizedby a cascadeof normalplacesandtransitions.Rather,the arcsare
usefulshorthandnotationsfor sucha cascade.

8.2. ESPN Model in HARP

When a fault occurs in the system, a token is deposited in the place labeled Fault. This

token enables the transition T_. The transition fires immediatel); thus removing a token from the

input place. Depending upon whether the fault is permanent, intermittent, or transient, a token

is then deposited in place Permanent, Active Intermittent, or Transient, with probability p,

i, or t, respectively. (These probabilities are user-input values.) Simultaneously, a token is

deposited in place Fault Exists, which represents the presence of an as yet undetected fault. If

the fault is permanent, the token remains in the Permanent place until the model is exited. If

tile fault is intermitt_'rlt, the token that was deposited in Active Intermittent circulates between

places Active Intermittent and Benign Intermittent, thus representing the oscillation of the

fault between the active and benign states. If the fault is transient, eventually the token

that was deposited in place Transient is passed to place Transient Gone, which represents the

disappearance of the fault. Note that if a token exists in both places Transient Gone and Fault

Exists, transition T5 can fire. This condition represents a transient fault that disappears before

its presence is felt.

While the fault is active and still exists (i.e., a token exists in place Fault Exists and no

token in either places Benign Intermittent or Transient Gone), two things can happen: an error

can be produced or the fault can be detected directly. These two events are represented by

transitions T6 and TT, respectively. If the self-test procedure is run while the fault is active,

then the fault is detected with probability d. Once an error is produced, it is detected with

probability q, or it propagates through the system and causes a system failure.

Once the fault is detected, a token is deposited in place Counter, which serves as a counter for

the nunfi)er of times transient recovery ha_s been attempted. As long as fewer than k tokens are

in place Counter, transient recovery can begin. When recovery is completed, the fault can still

exist, and the detection/recovery cycle can repeat. If recovery is completed and the transient

fault is gone, T5 fires, and the system is once again functioning correctly. If the recovery has

completed and the intermittent fault has become benign, transitions T6 and T7 wait for the

fault to become active again before they are enabled.

If the fault is detected too often (more than k times), the fault is then assumed to be

t)(,rmanent in nature, and no automatic recovery process begins. This condition is modeled by the

accumulation of k tokens in place Counter. Once k tokens are present, transition Tll is disabled

(transient recovery procedures are inhibited) and transition 3"12 is enabled (permanent recovery

procedures begin). Once the fault is determined to be permanent, a diagnostic procedure is

invoked to isolate the faulty unit; this condition is represented by a token in place Locate.

The diagnostic procedure is successful with probability 1. If the faulted unit is isolated,

the system attempts automatic reconfiguration, which is represented by place Reconfigure.

Reconfiguration is successful with probability r and the token is passed to place Permanent

Coverage, which represents the system again operating correctly, although performance can be

somewhat degraded.

The user input to this submodel axe the distributions of times for each transition, and the

probabilities of correct error detection q, fault detection d, fault location l, and reconfiguration r.

(Note that the distributions need not be exponential.) The user must also provide the number

of attempts at transient recovery k- 1, the percentage of faults that are permanent p, the

percentage of faults that are transient t, and, since this model is simulated for solution the

confidence level and percent error desired. The distributions available are constant, k-stage
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Erlang, exponential, gamma, log-normal, normal. Rayleigh, unifornl, and \Veitmll. For more

information on any of these distributions, see reference 18.

This FEHikl is the only model that is simulated for solution. During the simulation, a

statistical analysis of the simulation data is performe(t. The confidence intervals at)out the exit

probabilities are generated for the R and C exits and arc compared with the allowable error.

The S exit data is determined to t)c S = 1 - R - C. If the confidence interval is 1oo wide, tile

nmnber of trials is inerease(t (|)y a factor of 2). \Vhen the simulation has reached the (tcsired

accuracy, the results are appen(led to the parameter file. Tile ESPN simulator uses a random

mmlher generator whose se(_(l is linked to the host system clock. Thus, model state prot)ai)ilities

change with each new execution of HARP, even when the salllO input data are used. The ilser

cannot replicate the results for the following example, which is listed in the at)pcndix, mfless the

randolph nunll)er seed is set. (See vol. 1 of this TP.)

For this me(tel, t lm coverage factor R is the probability of a token reaching the place labeled

"Transient I_estoration"; C is the i)rol)a|)ility of a token reaching the place labeled "Permanent

Coverage"; and S is th(_ probability of a token reaching the place labeled "Single Point Failure."

The %urth factor, N is derived from the relative passage time to the three exits, _ has t)cen

described previously.

To demonstrate the use el the ESPN model, the three-processor, two-bus system is used.

The FORM input is left to the reader (either as a fault tree or a Markov chain) and the output

files arc listed in the appendix. For this example the hau)e_g program is run four times utilizing

the four (tifferent near-coincident fault type options. Tile results for the four rmm arc recorded

in the files with extensions .RS1, .RS2, .I{$3, an(t .RS4. Like our first examples, the complete

prograin runs arc listed along with a sample input ESPN model. The ESPN parainetcr file is

printed twice in appendix A |)oth before and after tile solution program is run. The simulation

results ot)taincd during the execution of havpcng are printed directly in the parameter file. In

this way_ mflcss tim input parameters c|lallge, the simulation is not rllll again.

8.2.1. tdrive Dialog for ESPN Model

$ tdrive

> f

HARP---Version 7.0, February 1993

NASA Langley Research Center/Duke University

Program Tdrive

Defaults are Invoked by "CR", Inputs are Case Insensitive

@uestion? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

Modelname?

> 3p2b

NAME for component ID

> processor

Symbolic failure rate7

> lambda

I. Enter "/d" or "done" if finished.

Component FEHM?
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> espn
FEHMfilename?

> espn.fhm

File ESPN.FHM doesnot currently exist

Create now? (y/n) ? y

HARP ESPN COVERAGE MODEL *

All times are in units of SECONDS

Transition numbers refer to ESPN figure in manual

Active to benign transition distribution? (T3)

Distribution type:

> help

Valid dists are:

uniform

exponential

Weibull

normal

Rayleigh

log Normal

Erlang (k-stage Erlang)

constant value

please try again

Distribution type:

> unif

Lower limit (seconds):

> 0

Upper limit (seconds) :

> 1

Transient fault lifetime distribution? (T4)

Distribution type :

> exp

lambda (rate parameter, events�second) :

> I00

Benign to active transition distribution? (T2)
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Distribution type:
> unif

Lowerlimit (seconds):

> 0

Upperlimit (seconds):
> .5

Detect transition distribution (self-test)? (T7)

Distribution type:

> unif

Lower limit (seconds):

>0

Upper limit (seconds) :

> .4

Fraction of faults detected (d)?

> .9

Production of errors distribution? (T6)

Distribution type :

> weibull

Scale parameter (rate, events/second):

> I0

Shape parameter? (alpha)

>2.5

Error propagation or detection distribution? (T9)

Distribution type :

> weib

Scale parameter (rate, events/second):

> 5O

Shape parameter? (alpha)

> .25

Fraction of errors detected? (q)

> .9

Transient recovery attempts? (k-l)

> 5

Transient recovery distribution? (T8)

Distribution type :
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> erlang

Rateparameter (events/second):

> 100

Numberof stages (positive integer):

> 2

Fraction of isolated detected faults? (i)

> .9

Isolation time distribution? (T13)

Distribution type:

> normal

Mean(seconds):

> 4

Standarddeviation (seconds):

> 1

Fraction of successful reconfigurations? (r)

> .9

Keconfiguration time distribution? (TI4)

Distribution type:

> normal

Mean(seconds):

> 1

Standarddeviation (seconds):

> .5

Fraction of transient faults? (t)

> .5

Fraction of permanentfaults? (p)

> .4

Confidencelevel? (choosefrom 60,65,70,75,80,85,90,95,98,

-- suggestedvalue is 95)
> 9O

Percenterror tolerated in the exit probabilities? (integer value --

suggest value between2 and 5)

> 10

FEHMinformation for this componentis stored in file ESPN.FHM

Continue => Y Reenter => N
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>y

NAMEfor componentID

> bus

Symbolicfailure rate?
> mu

ComponentFEHM?
> values

Continue => Y Reenter => N

>y

NAME for component ID

> done

2. Enter "/d" or "done" if finished.

3. Enter "/d" or "done" if finished.

Define interfering component types for near-coincident faults? (Y/N)?

>y

I PROCESSOR LAMBDA ESPN.FHM

2 BUS MU VALUES

When prompted for each component,enter the number of each dictionary ID

that is an interfering component type.

Separate entries by commas, _.e., 1,2.

Type "ALL" to specify all components.

Type "NONE" to specify no components.

Type "?" or"HELP" to see the dictionary again.

What components will cause the PROCESSOR to fail

>2

Fault Tree Description.

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.

Basic event node i:

Component ID?

>i

Replication factor?

>3

Summary: Basic event node I: 3 of component 1

Continue => Y Reenter => N, (Default = Y)

>y

Enter "/d" or done" for gate/box entry, ? for dictionary,
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or "/X" to correct input error.
Basic event node 2:

ComponentID?
>2

Replication factor?
>2

Summary:Basic event node 2: 2 of component2

Continue => Y Reenter => N, (Default = Y)

>y

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.

Basic event node 3:

Component ID?

> done

Enter "/X" to correct input error, ? for help.

Node 3: Gate or Box or Fbox (Enter "FBDX" as last node)

Enter gate type:

> and

Enter number of incoming arcs:

> 1

Enter ID number of source node for arc

> 1

SUMMARY: Node 3 : TYPE AND

Continue => Y Reenter => N, (Default = Y)

>y

Enter "/X" to correct input error, ? for help.

Node 4: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs:

> 1

Enter ID number of source node for arc i:

>2

SUMMARY : Node 4 : TYPE AND , i INPUTS : 2
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Continue=> Y Reenter=> N, (Default = Y)

>y

Enter "/X" to correct input error, ? for help.

Node 5: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> or

Enter number of incoming arcs:

>2

Enter ID number of source node for arc I:

>3

Enter ID number of source node for arc 2:

>4

SUMMARY: Node 5: TYPE OR , 2 INPUTS: 3 4

Continue => Y Reenter => N, (Default = Y)

>y

Enter "/X" to correct input error, ? for help.

Node 6: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> fbox

Enter ID number of source node for arc I:

>5

Summary: FBOX node 6: INPUT: 5

Continue => Y Reenter => N, (Default = Y)

>y

TRUNCATE the model after how m_y failures?

>0

Default selected: no truncation.

Include state tuples as comments in .INT file?

>n

Default selected: No state tuple notation.

FT2MC: Converting fault tree to Markov chain .

FT2MC: Successful completion

Ii internal Markov chain states generated

6 unique nonfailure states

2 failure states generated for HARP engine

Model information in file: 3P2B.INT

Dictionary information in file: 3P2B.DIC
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8.2.2. fiface Dialog for ESPN Model

$ fiface

HARP - Version 7.0, February 1993

Program FIFACE

Modelname?

> 3p2b

Matrix and symbol table information in: 3P2B.MAT

Which near-coincident fault rate files are to be created?

Enter:

N for NONE (ignore near-coincident faults)

A for ALL (all near-coincident faults are fatal)

S for SAMe (only faults of same type interfere)

U for USeR defined interfering component types

You can type combinations like AU, ASU, SA etc. *If more than one multi- *

Combinations of "N" with A, U or S are not allowed.*fault model is required *

•when multiple harpeng *

•executions are made, *

•specify them here. fiface*

> asu *will create .ALL,.SAM, *

• or .USR files for harpeng*

Enter probabilities now for component with failure rate MU? (y/n) ?

>y

The upper bounds of C and R and lower bounds of S and N should add to one.

The lower bounds of C and R and upper bounds of S and N should add to one.

Also the nominal values of C, N, R, S should add to I.

Probability of C2 ?

> .5

Variat ion?

> 0

Probability of R2 ?

> .3

Variation?

> 0

Probability of $2 ?

> .2

Variation?

> 0

Probability of N calculated to be:

Variation of N calculated to be:

0.000000

0.000000
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8.2.3. harpeng Dialog for ESPN Model

$ harpeng

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

Use an echo file from a previous run as the input file? y/n ?

> no

Modeln_me ?

> 3p2b

Output files:

3P2B.RSI

3P2B.PTI

-- Reliability and state probabilities

-- Graphics information

WORKING

3P2B. INP -- Input file or echo of input

Choose the near-coincident fault rate to be used

for the coverage factor calculations.

I: NONE (ignore near-coincident faults).

2: ALL-inclusive (all near-coincident faults are fatal)

3: SAMe-component (only faults of same type interfere).

4: Interfering component types (USeR-defined types).

> i

Declare meaning for symbol LAMBDA ( "?" or "help" )

> 1

For constant failure rate: LAMBDA

Nominal value?

> .5e-2

(+/-) Variation? (Must be less than nominal.

> 0

Declare meaning for symbol MU ( "?" or "help" )

> 1

For constant failure rate: MU

Nominal value?

> .5e-I

(+/-) Variation? (Must be less than nominal.
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>0

Redefine symbol(s) meaningsor their values, or correct an error (y/n)?

>n

Mission time? (Hours):

> i0

Mission time reporting interval? (Hours):

> I0

Compute Parametric Bounds using SIMPLE Model? (y/n) ? n

Simulating ESPN Fault/Error Handling Model ...

Calculating State Probabilities...

i Reports from the GERK ODE solver.

Please select:

I: Scroll. through the result file?

2: Solve same model with new mission time or near-coincident fault rates, etc.?

3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?

>2

Choose the near-coincident fault rate to be used

for the coverage factor calculations.

I: NDNE (ignore near-coincident faults).

2: ALL-inclusive (all near-coincident faults are fatal)

3: SAMe-component (only faults of same type interfere).

4: Interfering component types (USeR-defined types).

>2

Redefine symbol(s) meanings or their values, or correct an error (y/n)?

>n

Mission time? (Hours):

> i0

Mission time reporting interval? (Hours):

> I0

Compute Parametric Bounds using SIMPLE Model? (y/n) ? n

Calculating State Probabilities...

I Reports from the GERK ODE solver.

Please select:

i: Scroll through the result file?
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2: Solve same model with new mission time or near-coincident fault rates, etc.?

3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?

>2

Choose the near-coincident fault rate to be used

for the coverage factor calculations.

I: NONE (ignore near-coincident faults).

2: ALL-inclusive (all near-coincident faults are fatal)

3: SAMe-component (only faults of same type interfere).

4: Interfering component types (USeR-defined types).

>3

Redefine symbol(s) meanings or their values, or correct an error (y/n)?

>n

Mission time? (Hours):

> I0

Mission time reporting interval? (Hours):

> 10

Compute Parametric Bounds using SIMPLE Model? (y/n) ? n

Calculating State Probabilities...

0 Reports from the GERK ODE solver.

Please select:

I: Scroll through the result file?

2: Solve same model with new mission time or near-coincident fault rates, etc.?

3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?

>2

Choose the near-coincident fault rate to be used

for the coverage factor calculations.

I: NONE (ignore near-coincident faults).

2: ALL-inclusive (all near-coincident faults are fatal)

3: SAMe-component (only faults of same type interfere).

4: Interfering component types (USeR-defined types).

>4

Redefine symbol(s) meanings or their values, or correct an error (y/n)?

>n
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Mission time? (Hours):

> I0

Mission time reporting interval? (Hours):

> I0

Compute Parametric Bounds using SIMPLE Model? (y/n) ? n

Calculating State Probabilities...

Reports from the GERK ODE solver.

Please select:

i: Scroll through the result file?

2: Solve same model with new mission time or near-coincident fault rates, etc.?

3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?

>4
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Chapter 9

Incorporation of Near-Coincident
Faults

9.1. Overview

HARP is designed with the capability to model highly reliable systems. To approt)riatcly do

so, the possibility of modeling tile effects of near-coincident faults is included. A near-coincident

fault is one that occurs before tile coverage model has recovered from a single fault. How

disastrous the results are depends upon how tile user chooses to interpret the effects of the

near-coincident fault. Typically, the user models the effect of a near-coincident fault as a system

failure. This conservative assumption is often used to eliminate the user burden of acquiring

hard-to-get data and to simplii_'_, the model. HARP offers a number of multifault models to cover

the near-coincident fault effect, that is, system failure.

The FEHM's are specified in the same manner as before, supplying the C, S, and R exit

probat)ilities. Until now, these exit probabilities have been obtained with no time limit on the

recovery procedure. However, if a second fault occurs before reaching an exit then we are faced

with the problem of two existing faults. Because the second fault can crash the system, we

ideally want the FEtIM (coverage model) to exit before the second, near-coincident fault occurs;

however, for highly reliat)le systems, the probability of a second fault occurring in the recovery

interval is often a significant t)ortion of the total system failure probability. The near-coincident

fault model allows the user to account for pairs of faults that are likely to cause total system
failure.

When these mo(lels were I)eing developed over a decade ago, the developers believed that a

more complex model allowing more than two near-coincident faults would be of little practical

use and would not justify the additional computational burd(m for the aircraft, flight c(mtrol

at)plication. As electroni(: devices t)ecame more r('liable during that decade and continue to

do so, the developers' assumption t)roved correct. Most coimnercial and military aircraft flight

control systems and most existing systems in commercial use today can be effectively modeled

wh(m the near-coinci(lent fault is a mission critical factor. Systems using computers call have up

to four reconfigurable processing units where a majority vote can be effected until two coexisting

faults occur. When systems incorporate more than four voting processors and the near-coinci(ient

fault is a significant factor, tile HARP multifault models produce a conservative approximation

that |)c(!olnes inore conserw_tive as tile number of processors increases.

During that same decade, electronic microcomputers have also become more computationally

powerflll and cost has dropl)ed significantly, ushering in the development of distributed comput-

ers. Tile commercial transport industry's interest is shifting away from the task of creating

-highly reliable systems (now achievable) toward highly available distributed systems to reduce

maintenance costs and to garner greater computational resources. Such systems may need to

tolerate more than two near-coincident faults, and the automatic HARP near-coincident model

may become too conservative. Two options are available. The user can edit the HARP generated

ASCII files to correct the next fault rates to the exact, ones in files *.ALL, *.SAM, or *.USR

(as appropriate), and if necessary, edit the *.MAT files to add additional state transitions as

necessary. An exact Markov chain model can be obtained in this manner. An alternative is to

use the extended behavioral decomposition multifault model implemented in X-Window System

HARP (XHARP) (ref. 5). Volume 1 of this Technical Paper provides more details.
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Figure 19. Structure of HARP FEItM.

The coverage model is still solved in isolation; not only the probability of reaching the R, C,

and S exits but also the time to reach each exit are calculated. If we know (probabilistically) when

a near-coincident fault occurs and also the time to reach the R, C, and S exits, we can determine
whether one of these exits is reached before the near-coincident fault. A fourth exit N is added to

the coverage model leading to a new failure state labeled FNCF (failure near-coincident fault).

(See fig. 19.) Tile probabilities r, c, and s are now adjusted since the exits must be reached

before a certain time. Therefore, N = (1 - C - R - S). (See vol. 1 of this TP for tile derivation

of C, R, and S.)

Again, we automatically incorporate the possibility of imperfect coverage into the perfect

coverage Markov chain, as subsequently shown in our three-processor example. Unlike the

previous figures of the three-processor system, the FEHM's here have four exits. Note, too, that

the exit probabilities are now distinct for FEHM 1 and FEHM 2 (fig. 20) because the next fault

rates are state dependent.

r3 r2

Figure 20. Three-processor system showing FEHM's with C, S, R, and N exit probabilities.

While in the coverage model denoted by FEHM 1, a second processor fault is possible with

rate 2*A. Therefore, one of the exits, R, C, or S must be reached before time to the second fault
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(whichisanexponentiallydistrihutedrandomvariablewith parameter2,,_) if a near-coincidenI
fault is to be avoided. Likewise, while in tile coverag(' model denoted by FEtt5I 2, another

processor failure can occur with rate A.

Assume that FEHM 1 and FEHM 2 in figure 20 are exponentially distributed delays with

rate _ (see fig. 21). Thus, s = i" = 0. Note that in the absence of a near-coincident fault, c = 1.

However, with the near-coincident fault occurring at the rate 2. A from FEHM 1, tile probatfility

of a successful C exit before the occurrence of a second near-coincident fault is easily shown to

be c3 - 3--+2.A'

Figure 21. Three-processor system showing n(,ar-coinci(h, nt faults.

Similarly for FEHM 2, c2 = _. The instantaneous junlp model is shown in figure 21.

Figure 22. Instantaneous jump model of three-processor system with n(,ar-coincidcnt faults.

In figure 22, n:l = 1 -- c 3 and n2 = 1 - c2. Thus, the inclusion of near-coincident faults causes

the coverage values to become state dependent. The HARP program automatically derives the

coverage factors by taking the Laplace transform of the time-to-exit distributions. We compute

the transforms for the single fault model and then substitute the second near-coincident fault

rate for the Laplace transform variable to obtain the state-dependent coverage values. If the

time-to-exit distribution is not available in closed form, a Taylor series expansion of the Laplace

transform yields an expression that depends on powers of the next fault rate and on the moments

of the distribution. These moments are easily obtained from empirical or simulation data. See
reference 6 for the mathematical derivations.

We need not restrict ourselves to single-state FEHM's. Let us again look at a portion of

the CARE III coverage model that was introduced in chapter 4 on permanent faults. While

essentially the same model as figure 13, the instantaneous transition labeled PA in figure 13

is now an instantan(ous transition out of the FEHM. (See fig. 23.) We have also added the
near-coincident fault rates.
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Figure 23. Permanent CARE III FEHM with N, C, and S exits.

Now the FEHM probabilities, when replaced by a branch point are

c3 -
6+p+2A + 6+p+2A e+2A c2-- 6+p+A + (_+p+A

and

s3= 6+p+2& eT2A 6+p+A e+A

As before, these probabilities are determined by the HARP program based on the user inputs

for the rates and probabilities in the model.

9.2. Near-Coincident Fault Options

As discussed in volume 1 of this Technical Paper, the HARP user has three options (three

multifault models) for modeling near-coincident faults. To better demonstrate the various

options allowed in HARP, the following Markov model is utilized. In this example, we show

that the reduced model after each FEHM has been reduced to a branch point. The ares entering

tile FNCF (not shown) are part of the inherent structure of the model. For each C*, there is a

corresponding N* into the FNCF state.

9.2.1. ALL-Inclusive Near-Coincident Multifault Model

This specification for the interfering fault assumes that a second near-coincident fault

anywhere in the system (while attempting to handle a first fault) causes immediate system failure

(via the FNCF state). The use of this model always gives a conservative result for practical

systems of interest. Volume 1 chapter 7 of this Technical Paper presents an example system

where the ALL model is specified for a system that has nearly independent fault containment

regions. Under certain conditions, the degree of conservative error can be quantified by using

HARP's simple lower bound (see vol. 1 of this TP). Another alternative is to modify the HARP

generated ASCII files (*.ALL, *.SAM, *.USR and perhaps the *.MAT in some cases) with a text

editor for specifying the exact next fault rate(s). When fault rates are specified correctly, an

accurate result can be obtained. The simple bounds also become valid for all Markovian models

and can be used to gauge the results. Using XHARP (ref. 15) is another alternative.
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Giventhe Markovchainof figure24, for tile arc lat)eledwith a "CI', tile next fault rate
is 5Al + 3A2+ 2Aa. This rate is found|)y lookingat the targetstate (state2) and taking tile
maximumof thesumof the incomingaresminus1.0for this componenttype (A1)andthe sum
of the samecomponenttype parametersexiting the state, lit addition, the maxinmnt between

the incoming and outgoing ares for ew,ry other component type in the dictionary is added to

lhe rate. (t{owever, the dictionary must be comph.'te for a correct rale.) For this system, the all

inclusive rate file appears as follows. (Note, the expression following each Ci is the next fault

rate correspon(ling to the (7i transition and is not, the coverage wdue.)

:lXl * ('2

N /
\ 2A,_ * (:4 t

Iqgure 21. Syslem modvl for examph' 1.

FIGURE 24 .ALL file

CI

5*LAMBDAI+3*LAMBDA2+2*LAMBDA3;

C2

5*LAMBDAI+3*LAMBDA2+2*LAMBDA3;

C3

5*LAMBDAI+2*LAMBDA2+2*LAMBDA3;

C4

5*LAMBDAI+3*LAMBDA2+LAMBDA3;

C5

4*LAMBDAI;

C6

3*LAMBDA1;

C7

2*LAMBDAI;

9.2.2. SAME-Type Near-Coincident Multifault Model

More optimistically, the user can assume that only near-coincident fimlts of the same

component type cause system failure (while attempting to handle a first fault). For the FEHM

associated with C1 in figure 24, only those eomt)onents that _il with rate A1 cause system

failure. The same tyt)e files appears as fi)llows:

FIGURE 24 .SAM file

CI

5*LAMBDAI;

C2
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5*LAMBDAI;

C3

2*LAMBDA2,

C4

LAMBDA3 ;

C5

4*LAMBDAI ;

C6

3*LAMBDAI ;

C7

2*LAMBDA 1 ;

9.2.3. USER-Defined Near-Coincident Multifault Model

For some models, the user can define explicitly for each component, which components (itself

and/or others) can interfere with fault recovery. Thus, the next fault rate for the FEHM's

between operational states depends on user input. Let us refer to those components with

rate A1 as processor1, A2 as processor2, and A3 as processor3. For this example, the user can

specify that all three processors interfere with recovery in the processor1 components, but only

processor2 affects recovery in processor2 and only processor3 interferes with its own recovery.

While processor1 can be modeled with the all-inclusive fault type and processor2 and processor3

with the same-type next fault rate, only one near-coincident fault, rate type can be specified for

the entire model. This file appears as follows:

FIGURE 24 .US}% file

Cl

5*LAMBDA 1+3*LAMBDA2+2*LAMBDA3 ;

C2

5*LAMBDA 1+3*LAMBDA2+2*LAMBDA3 ;

C3

2*LAMBDA2 ;

C4

LAMBDA3 ;

C5

4*LAMBDA I;

C6

3*LAMBDAI ;

C7

2*LAMBDAI ;
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9.2.4. Example for .ALL and .SAM Options

Now let A2 = A1, allowing tile user the ability to utilize an overriding FEHM file option. We

now remove the A3 arc for simplicity. (See fig. 25.)

3X_ *C2

3A1 *C3

Figure 25. System model fl)r exanq)h' 2.

For this system, the all inclusive rates are the same as the same type rates.

C1

6*LAMBDA1 ;

C2

5*LAMBDA1 ;

C3

5*LAMBDA1 ;

C4

4*LAldBDA1 ;

C5

3*LAIdBDA 1 ;

C6

2*LAMBDAi ;

9.2.5. No Near-Coincident Faults

If the user chooses, near-coincident faults can be ignored. As a result, the probability of

being in state FNCF is zero.

9.3. Specification of Near-Coincident Fault Rates

The user need not worry about the actual near-coincident fault rates in HARP. While running

the engine program (harpeng), the user is asked which near-coincident fault rate to use. Once one

of the four options is chosen (ALL-inclusive, SAME-type, USER-defined, NONE), the program

automatically determines the correct next fault rate. When no coverage models were specified

in the tdr_ive program or no near-coincident faults were specified in the fl'facc program, the user

is not asked about near-coincident faults in harl)eng.
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Chapter 10

Error Bounds

This section addresses the question posed by the engine pertaining to running bounds. In

general, the tdrive and fiface programs process a system model using failure rates that are

symbolic rather than numeric (of course, numeric values can be entered in the Markov chain in

tdrive if desired). The user binds the numeric values to the symbolic rates during the execution

of harpeng. Because many input parameters to the FORM model are not known exactly (i.e.,

coverage values from simulation are given as confidence intervals and the user may only know a

range of values for the failure rates), HARP enables the user to specify the rates as a nominal

value plus or minus a variation.

Two different kinds of bounds are provided by the HARP program, simple model (parametric)

bounds and model truncation bounds. Depending on the system being modeled, none, one, or

both kinds of bounds may be applicable.

The simple parametric bounds are computed for two distinct classes of models: The AS IS

model that does not use any FEHM's and does not invoke behavioral decomposition, and those

models that do invoke FEHM's and behavioral decomposition. Both model classes can also be

modified to reflect the model state reduction technique called truncation. (See vol. 1 of this TP.)

The AS IS model is used strictly for parametric analysis that reports the effect of system

unreliability as a function of the user-specified parametric variation. These data are useful for

sensitivity analyses. The simple parametric bounds for this model class are true bounds for the

original user-specified model. (See vol. 1 of this TP.)

When FEHM's and behavioral decomposition are invoked, the simple bounds take on two

manifestations. When no parametric variation is specified and the user selects the simple bounds

computation (prompted by HARP), simple upper and lower bounds are computed based on

estimated maximum and minimum imperfect coverage and lack of sufficient redundancy. If in

addition, parametric variation is specified, a combined effect is estimated, that is, imperfect

coverage with insufficient redundancy and parametric variation. Unlike the AS IS model, the

simple lower bound associated with behavioral decomposition is a conditional bound. When

many fault contaill_nent regions are modeled, the lower bound may not bound the full model

unreliability but will bound the HARP instantaneous jump model unreliability. (See vol. 1 of

this TP.)

HARP does not allow bounds to be evaluated when any failure rate is Weibull. When the

system being modeled has repair, bounds are evaluated only when an absorbing state is present
in the model.

10.1. Simple Model (Parametric) Bounds

10.1.1. AS IS Model

Because many input parameters to the FORM model are not known exactly (e.g., the user

may only know a range of values for the failure rates), HARP allows the FORM input parameters

to be expressed in terms of ranges of values rather than point estimates. HARP produces upper

and lower bounds on the system unreliability that are a function of these ranges of values. The

model evaluates the overall system failure probability by taking the lower bound on the failure

rates and the upper bound on the repair rates as the best case and by taking the upper bound
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on the failureratesandthe lowerboundon the repairratesasthe worstcase.The modelalso
producesthepredictedunreliabilitybasedon thenominalvalues.Thesimpleparametricbounds
for this modelclassareboundsfor theoriginaluser-specifiedmodel.

10.1.2. Models With Behavioral Decomposition

Weapproachtheanalysisoferrorsbydecomposingtheoriginalmodelinto twosimplermodels
that canbecombinedto obtainaconservativeunreliabilityestimate(refs.19to 21). Thegeneral
formof the simpleboundsis givenas:

P(AUB ) <_ min[1,P(Ahigh)+ P(Bmax)]

P(AUB ) _ ma, x[P(Alow),P(Bmin)]

The first rule gives the conservative bound, and the second rule gives the optimistic bound m.

The first expression gives the upper unreliability bound, and the second gives the lower

unreliability bound. P(A) is the system failure probability caused by the lack of sufficient

redundancy. P(Ahigh) and P(Alow) are used instead of P(A) when parametric tolerance is

selected to cause P(A) to be maximum to get P(Ahigh) and to cause P(A) to be minimum to
get P(Alow)- P(B) is the probability of system failure due to imperfect coverage. When FEHM's

are specified for behavioral decomposition, P(B) is computed for the minimum imperfect

coverage to get P(Bmin) and the maximum imperfect coverage to get P(Bmax). P(A) is further

modified when transients are specified in at least one FEHM. The perfect redundancy model

(coverage assumed to be perfect) transition rates are modified by coefficients that reflect transient

restoration probabilities. The net effect is to reduce the probability of failure by redundancy
exhaustion since transient restoration occurs.

The simple bounds computed by HARP are the bounds on the instantaneous coverage model

(see vol. 1 of this TP) that produces the unreliability result and also bomlds the user's full

model under certain conditions: The simple upper bound on the system unreliability is always a

true bound with respect to both the instantaneous coverage model and the user-specified model

(provided all failure rates are constant).lt

The validity of the optimistic lower bound with respect to the user-specified model is

dependent on the use of large mmlbers of fault containment regions that require the ALL

multifault model (see chapters 1 and 7 of this TP for details).

The HARP simple bounds are used for preliminary estimates of unreliat)ility. They are

provided as a quick-look computation that can be used in the early stages of system design

when only ranges of parameter values are available. The essence of HARP output is the nominal

result (instantaneous jump model unreliability) and not the simple bounds. If the model is solved

AS IS, without any FEHM's or with the VALUES FEHM, the HARP bounds are true bounds

for the user-specified flfll model. With FEHM's, the upper bound is always a true bound, and

the lower bound is also a true bound except possibly for a limited class of systems with many

fault containment regions.

10 Validity of these })ounds is subject to lh_ corr(_('t specification of multi fault models, where applicable (see vol. 1 of this

TP).

II HARP FEtINI's and multifault models only support single recov(!ry transitions. SysteIll models with multiple recovery

transitions can cause the simple upper bound to improperly bound the HARP unreliability result or the full model. For

such systems, the user can edit HAtlP-generated ASCII files with a text editor to speci[y the correct model. In this cause,

the bounds will be valid. XHARP provi(tes another modeling alternative. The HARP AS IS model can also 1)e used t(_

provide accurate results.
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10.2. Truncation Bounds

Truncation bounds are obtained as follows. When the truncated model is solved, the

probability of being in each of the TA states is calculated. By adding these probabilities to

that of the DOWN (failed) states (DS) before the truncation line, we get an upper bound on

the system unreliability (SU). This result assumes that all states beyond the truncation line are

failed states. To get a lower bound on unreliability, we add only the probabilities of the failure

states before the truncation line. In this case, the TA states are automatically considered to be

functional states by HARP. To use some notation, the states in the truncated model are denoted

with a subscript tr and the states in the full model have the subscript full. The bounds on the

system unreliability are given by the following equation:

Pr(DStr) < SUful I _< Pr(TAtr)+ Pr(DStr)

HARP not only gives the system unreliability but also provides a breakdown in terms of

individual failure probabilities. Failure causes are the exhaustion of different components, FNCF

and FSPF. In a truncated model, HARP gives bounds on the system unreliability as well as

individual failure probabilities. F1 denotes a state where fewer than the minimum required of

component type 1 are still operational. If there is an F1 state before the truncation level, we

use the probability of being in the F1 state as a lower bound on the probability of failure due

to exhaustion of component i. All transitions due to failure of component 1 that fall on the

truncation line and do not lead to state F1 are directed into a state called TA1.

Probability of failure due to exhaustion of component 1, Pr(Flfull ), is bounded as follows:

Pr(Fltr) <_ Pr(Flfull) <_ Pr(TAltr)+ Pr(Fltr)

The bounds on the probability of exhaustion of other components are obtained in a similar

manner. Now we obtain bounds for the probability of a near-coincident fault and a single-point
fault.

The probability of being in the FNCF state before the truncation level is a lower bound on

the FNCF probability. The upper bound is taken to be this lower bound probability added to

the combined probability of all TA states:

Pr(FNCFtr) < Pr(FNCFfull ) < Pr(TAtr)+ Pr(FNCFtr)

The bounds on probability of single-point fault are obtained in a similar manner as given as
follows:

Pr(FSPFtr) < Pr(FSPFfull ) < Pr(rAtr)4-Pr(FSPFtr)

10.3. Combined Bounds

When parametric bounds (via a simple model) are desired from a truncated model, the bounds

are combined in the following way. The simple model solution uses the optimistic parameters

(lowest possible failure rates, highest possible repair rates and coverage factors) to produce an

upper bound on tile reliability of the system (ref. 20).

Rhigh(t) = 1 -- max[Peshlow(t), Pcovlow(t)]

If the model from which the simple bounds are derived is a truncated model, then the

TA states are taken to be operational states (for the optimistic bound). Likewise, the simple
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modelsolutionusestile pessimisticparameters(highestpossiblefifilure rates,lowestpossible
coveragefactorsandrepair rates)to producea lower/)omMon the unreliabilityof th¢'sysWnl
(ref.20).

Hlow(t) = 1 -min[Poshhigh(t)+ [],ovhigh(t), 1]

If t.he model from which the simple model bounds are derived is a truncated model, then the

TA states are taken to be failure states (for the pessimistic bom_ds). The first type of bounds are

reported as "simple model bounds," the second type are reported a.s "t.rmlcaled model bomMs.'"

and the combined bomlds arc reported as "truncated simple nlodel bounds."

The use of behavioral det:omposition and instantaneous coverage factors have been proven to

result ill conservative estimates of reliability (ref. 22), when failure rates are constant. (ext)onential

times t.o failure). Both bounding techniques (simple and truncation) produce bounds on this

conservative estimate of reliability. For the class of practical highly reliable systems, the HARP

(simple and truncation) bomlds also encompass the reliability of tile original model.

If a model is extremely large and cannot fit in the engine data structure simultaneously, the

bounds are disallowed. Also, if a model has Weibull failure rates or no absorbing states, bounds

are not asked for nor provided.

NASA Langley Research Centt_r
Hampton, VA 23681-0001
June 15, 199,I
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Appendix A

File Listings of HARP Examples

A1. Example 3PFT1

Exampl(_ 3PFT1 presents a model of a three pro(:c'ssor (tripl(_x) system that was input as a

fault tree. Each component is specified as a unique b_tsic event. (See section 3.1.)

File 3PFTI.DIC gives the output fronl [)rogram td_vc.

I PROCESSORI LAMBDAI NONE

INTERFERING COMPONENT TYPES:

2 PROCESSOR2 LAMBDA2 NONE

INTERFERING COMPONENT TYPES:

3 PROCESSOR3 LAMBDA3 NONE

INTERFERING COMPONENT TYPES:

FEIDS

i0 9 8

File 3PFTI.INT gives the output from program tdrivc.

SORTED

I 2 LAMBDAI;

i 3 LAMBDA2;

I 4 LAMBDA3;

2 5 LAMBDA2;

2 6 LAMBDA3;

3 5 LAMBDAI;

3 7 LAMBDA3;

4 6 LAMBDAI;

4 7 LAMBDA2;

5 8 LAMBDA3*X;

6 9 LAMBDA2*X;

7 10 LAMBDAI*X;

File 3PFT1.MAT gives the output ffomprogramfiface.

$0

2 , 1

LAMBDA1;

3 , 1
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LAMBDA2;

4 , I

LAMBDA3;

5 , 2

LAMBDA2;

5 , 3

LAMBDAI;

6 , 2

LAMBDA3;

6 , 4

LAMBDAI;

7 , 3

LAMBDA3;

7 , 4

LAMBDA2;

8 , 5

LAMBDA3*X;

9 , 6

LAMBDA2*X;

i0 , 7

LAMBDAI*X;

0,0

File 3PFT1.SYM gives the output from prograln fifece.

X

999

END SYMBOL DEFINITION

F1

I010

F2

1009

F3

1008

END FAILURE STATE DEFINITION
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File 3PFTI.RS1 gives the output from program harpeng.

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

Modelname:

3PFT1

Input description (from dictionary file):

Component type: 1 Name: PROCESSOR1

Symbolic failure rate:

LAMBDAI Constant failure rate:

0.10000000D-02 +/-

FEHM file name: NONE

Component type: 2 Name: PROCESSOR2

Symbolic failure rate:

LAMBDA2 Constant failure rate:

O.IO000000D-02 +/-

FEHM file name: NONE

Component type: 3 Name: PROCESSOR3

Symbolic failure rate:

LAMBDA3 Constant failure rate:

0.10000000D-02 +/-

FEHM file name: NONE

NO near-coincident faults considered.

Time(in Hours): O.IOOD+02

0.32837475D-06

0.32837475D-06

0.32837475D-06

State Probabilities

State name: F1

State name: F2

State name: F3

O.O0000000D+O0

O.O0000000D+O0

O.O0000000D+O0

Reliability = 0.99999901D+00

Unreliability = 0.98512425D-06

Total failure by redundancy exhaustion = 0.98512425D-06

GERK ODE solver: global error value 0.I07D-16

relative error value O.IOOD-08
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See Users Guide, section 3.3 for interpretation.

0 Reports from the GEKK ODE solver.

A2. Example 3PFT2

Example 3PFT2 is identical to the previous one except that a replication factor of three is

specified for the basic events to aggregate the unique basic events into one basic event. (See

section a.2.)

File 3PFT2.DIC gives the output from program tdrive.

I PROCESSOR LAMBDA NONE

INTERFERING COMPONENT TYPES:

FEIDS

4

File 3PFT2.INT gives the output from program _d_'ive.

SORTED

1

2

3

2 3,LAMBDA;

3 2*LAMBDA;

4 LAMBDA*X;

File 3PFT2.MAT gives the output [rom program fifacc.

4

2 , 1

3*LAMBDA;

3 , 2

2*LAMBDA;

4 , 3

LAMBDA*X;

0,0

File 3PFT2.SYM gives the output from program fiface.

X

999

END SYMBOL DEFINITION

F1

1004

END FAILURE STATE DEFINITION
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File 3PFT2.RS1 gives the output from program harpeng.

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

0.98512425D-06

Modelname:

3PFT2

Input description (from dictionary file):

Component type: I Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

0.10000000D-02 +/-

FEHM file name: NONE

NO near-coincident faults considered.

Time(in Hours): O.IOOD+02

State Probabilities

State name: FI

O.O0000000D+O0

Reliability = 0.99999901D+00

Unreliability = 0.98512425D-06

Total failure by redundancy exhaustion = 0.98512425D-06

GERK ODE solver: global error value 0.716D-17

relative error value 0.I00D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GEKK ODE solver.

A3. Example 3PMC

Example 3PMC is the same system model as previously displayed, but it is entered ms a

Markov chain directly in lieu of a fault tree. (See section 3.3.)

File 3PMC.DIC gives tile output from program tdrive.

-1ASIS

File 3PMC.INT gives the output _omprogramtdrivc.

UNSORTED

3 2 3*LAMBDA;

2 1 2*LAMBDA;

1 FI LAMBDA;
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File 3PMC.MAT gives the output _om program fiface.

4

2 , 1

3*LAMBDA;

3 , 2

2*LAMBDA;

4 , 3

LAMBDA*X;

0,0

File 3PMC.SYMgives the output _omprogramfiface.

X

999

END SYMBOL DEFINITION

Fi

1004

END FAILURE STATE DEFINITION

File 3PMC.RSI gives the output _om program harpeng.

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

+/- O.O0000000D+O0

0.98512425D-06

Modelname:

3PMC

Symbolic values:

Symbolic failure rate:

LAMBDA Constant failure rate:

O.IO000000D-02

NO near-coincident faults considered.

Time(in Hours): O.IOOD+02

State Probabilities

State name: F1

Reliability = 0.99999901D+00

Unreliability = 0.98512425D-06

Total failure by redundancy exhaustion = 0.98512425D-06
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GERK ODE solver: global error value 0.716D-17

relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

A4. Example 3PCARE1

These files are for the replicated triplex processor system with a CARE FEHM specified for

permanent faults. (See section 6.)

FILE 3PCARE1.DIC output from program tdrive.

1 PROCESSOR LAMBDA CAKEI.FHM

INTERFERING COMPONENT TYPES:

FEIDS

4

File 3PCAREI.INT gives the output from program tdrive.

SORTED

1 2

2 3

3 4

3*LAMBDA;

2*LAMBDA;

LAMBDA*X;

FEHM FILE CARE1.FHM

CAKE.SINGLE.FAULT.MODEL

PROBABILITY OF PERMANENT: O.lO000000d+Ol

PROBABILITY OF INTERMITTENT: O.O0000000d+O0

PROBABILITY OF TRANSIENT: O.O0000000d+O0

PERMANENT MODEL PARAMETERS

DELTA: 0.36000000d+03

EPSILON: 0.36000000d+04

RHO: 0.18000000d+03

PA: O.lO000000d+Ol

Q: 0.99900000d+00

File 3PCARE1.MAT gives the output _om program fiface.

5

2 , 1

3*LAMBDA*C1;

3 , 2

2*LAMBDA*CI;
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4 , 3

LAMBDA*X;

5 , 1

3*LAMBDA*S1;

5 , 2

2*LAMBDA*S1;

0,0

File3PCARE1.SYM gives the outputfromprogram fiface.

Cl

3

CARE1.FHM

X

999

END SYMBOL DEFINITION

F1

1004

FSPF

1005

END FAILURE STATE DEFINITION

File 3PCARE1.RS1 gives theoutputfronlprogran_ h arpeng.

................. HARP

- The Hybrid Automated Reliability Predictor -

............ Release Version 7.0 .............

February 1993

Modelname:

3PCARE1

Input description (from dictionary file):

Component type: 1 Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

O.IO000000D-02 +/-

FEHM file name: CAREI.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: O.O0000000D+O0
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Permanentcoverage:

Single-point failure:
NOnear-coincident faults considered.

Time(in Hours): O.IOOD+02

State Probabilities

State name:F1

State name:FSPF

0.99966667D+00

0.33333333D-03

0.98446761D-06

0.99498051D-05

Reliability = 0.99998907D+00

Unreliability = 0.I0934273D-04

Total failure by redundancy exhaustion = 0.98446761D-06

GERK ODE solver: global error value 0.I07D-16

relative error value O.IOOD-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

A5. Example 3PARIES

These files are for the replicated triplex processor system with an ARIES FEHM specified.

(See section 6.2).

FEHM file ARIES.FHM

ARIES.TRANSIENT.RECOVERY.MODEL

PROBABILITY THAT FAULT IS TRANSIENT 0.90000000d+00

MEAN DURATION 0F TRANSIENT FAULT 0.50000000d-02

PROHABII,ITY THAT FAULT IS CATASTROPHIC 0.10000000d-02

NUMBER OF TRANSIENT RECOVERY PHASES 3

PHASE 1 DURATION:

PHASE 2 DURATION:

PHASE 3 DURATION:

0.80000000d+O0 EFFECTIVENESS:

0.20000000d+O0 EFFECTIVENESS:

O.lO000000d+O0 EFFECTIVENESS:

0.80000000d+O0

0.70000000d+O0

0.50000000d+O0

FAILURE RATE OF RECOVERY SYSTEM HARDWARE: .O0000000D+O0

COVERAGE OF PERMANENT FAULT: 0.85000000d+00

File 3PARIES.RS1 gives the output _omprogramharpeng.

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

Modelname:
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3PARIESI

Input description (from dictionary file):

Componenttype: 1 N_me:PROCESSOR

Symbolicfailure rate:
LAMBDA Constantfailure rate:

O.IO000000D-02 +/-

FEHMfile name:ARIES.FHM

For this FEHMmodel, the exit probabilities are:

(in the absenceof near-coincident faults)

Transient restoration:

Permanentcoverage:

Single-point failure:
NOnear-coincident faults considered.

Time(in Hours): O.IOOD+02

State Probabilities

State name:F1 0.99891519D+00

State name:FSPF 0.I0848086D-02

0.76423498D+00

O.O0000000D+O0

0.199559027D+00

0.36214753D-01

Reliability = 0.99891519D+00

Unreliability = 0.I0848086D-02

Total failure by redundancy exhaustion = 0.39604048D-07

GERK ODE solver: global error value 0.280D-19 {Depend on computing}

relative error value O.IOOD-08 {platform}

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

A6. Example 3PCARE2

These files are for tile triplex processor system using tile CARE FEHM with transient _ults.

(See section 6.4.)

FEHM FILE CARE2.FHM

CARE.SINGLE.FAULT.NODEL

PROBABILITY OF PERMANENT: O.O0000000d+O0

PROBABILITY 0F INTERMITTENT: 0.00000000d+00

PROBABILITY OF TRANSIENT: 0.10000000d+01

TRANSIENT MODEL PARAMETERS
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ALPHA: 0.36000000d+05

DELTA: 0.36000000d+03

EPSILON: 0.36000000d+04

RH0: 0.18000000d÷03

PA: 0.50000000d+O0

PB: 0.50000000d+O0

Q: 0.90000000d+00

File 3PCARE2.RS1 gives the output from program harpeng.

HARP

The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

0.99232518D+00

0.71796719D-02

0.49514978D-03

Modelname:

3PCARE2

Input description (from dictionary file):

Component type: I Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

O.IO000000D-02 +/-

FEHM file name: CARE2.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration:

Permanent coverage:

Single-point failure:

NO near-coincident faults considered.

Time(in Hours): O.IOOD+02

State Probabilities

State name: F1 0.51414141D-I0

State name: FSPF 0.14853850D-04

O.O0000000D+O0

Reliability = 0.99998515D+00

Unreliability = 0.14853901D-04

Total failure by redundancy exhaustion = 0.51414141D-I0

GEKK DDE solver: global error value 0.358D-17
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relative error value O.IOOD-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

AT. Example 3PCARE3

These files are for the triplex processor using the CARE FEHhl with intermittent _ults. (See

section 7.)

FEHM file CARE3.FHM

CARE.SINGLE.FAULT.MODEL

PROBABILITY OF PERMANENT: 0.20000000d+O0

PROBABILITY OF INTERMITTENT: 0.20000000d+O0

PROBABILITY OF TRANSIENT: 0.60000000d+O0

PERMANENT MODEL PARAMETERS

DELTA: 0.30000000d+03

EPSILON: 0.36000000d+04

RHO: 0.24000000d+03

PA: O.iO000000d+Oi

Q: 0.99900000d+00

INTERMITTENT MODEL PARAMETERS

ALPHA: 0.21000000d+04

BETA: 0.30000000d+04

DELTA: 0.36000000d+03

EPSILON: 0.36000000d+04

RHO: 0.18000000d+03

PA: 0.90000000d+O0

PB: O.iO000000d+O0

Q: 0.99900000d+00

TRANSIENT MODEL PARAMETERS

ALPHA: 0.36000000d+05

DELTA: 0.18000000d+03

EPSILON: 0.36000000d+04

RHO: 0.18000000d+03

PA: 0.50000000d+O0

PB: 0.50000000d+O0

Q: 0.99900000d+00
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File 3PCARE3.RS1 gives thc output from program harpeng.

HARP

- The Hybrid Automated Reliability Predictor -

0.59702017D+00

0.40280819D+00

0.17163782D-03

Release Version 7.0

February 1993

Modelname:

3PCARE3

Input description (from dictionary file):

Component type: I Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

0.I0000000D-02 +/-

FEHM file name: CARE3.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration:

Permanent coverage:

Single-point failure:

NO near-coincident faults considered.

Time(in Hours): O.IOOD+02

State Probabilities

State name: F1 0.16103642D-06

State name: FSPF 0.51387370D-05

O.O0000000D+O0

Reliability = 0.99999470D+00

Unreliability = 0.52997734D-05

Total failure by redundancy exhaustion = 0.16103642D-06

GERK ODE solver: global error value 0.358D-17

relative error value 0.I00D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
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A8. Example 3MMOMENTS

These files are for the triplex processor system with the Moments FEHM. The Moments

FEHM is substituted for the ARIES FEHM. (See section 6.2.)

FEHM file FEHM.MOM

PROBABILITIES.AND.MOMENTS

TRANSIENT RESTORATION EXIT:

EXIT PROBABILITY: .9800

FIRST MOMENT OF TIME TO EXIT: O.

SECOND MOMENT OF TIME TO EXIT: O.

THIRD MOMENT OF TIME TO EXIT: O.

RECONFIGURATION COVERAGE EXIT:

EXIT PROBABILITY: .1615e-0i

FIRST MOMENT OF TIME TO EXIT: 45.00

SECOND MOMENT OF TIME TO EXIT: .2500

THIRD MOMENT OF TIME TO EXIT: O.

SINGLE POINT FAILURE EXIT:

EXIT PROBABILITY: .3850e-02

FIRST MOMENT OF TIME TO EXIT: O.

SECOND MOMENT OF TIME TO EXIT: O.

THIRD MOMENT OF TIME TO EXIT: O.

File 3MMOM.RS1 gives the output from program harpe_9.

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

Modelname:

3MMOM

Input description (from dictionary file):

Component type: i Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

O.IO000000D-02 +/-

FEHM file name: MOM.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)
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Transient restoration:

Permanentcoverage:

Single-point failure:
NOnear-coincident faults considered.

Time(in Hours): 0.I00D+02

State Probabilities

State name:FI

State name:FSPF

0.98000000D+00

0.16150000D-01

0.38500000D-Off

0.26010668D-09

0.11548400D-03

Reliability = O. 99988452D+00

Unreliability = O. I1548426D-03

Total failure by redundancy exhaustion = 0.26010668D-09

GERK ODE solver: global error value 0.175D-20

relative error value O. 100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GEKK ODE solver.

A9. Example 3MDIST

These files are for the triplex processor system with the Distributions and Probabilities

FEHM. The Distributions and Probabilities FEHM is substituted for tile ARIES FEHM. (See

section 6.2.)

FEHM file DIS.FHM

DISTRIBUTIONS. AND. PROBABILITIES

TRANSIENT RESTORATION EXIT:

EXIT PROBABILITY : O. O0000000d+O0

RECONFIGURATION COVERAGE EXIT:

EXIT PROBABILITY : 0. 99000000d+00

DISTRIBUTION TYPE: EXP

RATE : O. 16670000d-01

SINGLE POINT FAILURE EXIT:

EXIT PROBABILITY: O. lO000000d-Ol

DISTRIBUTION TYPE: CONSTANT

VALUE: O.O0000000d+O0
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File 3NIDIST.RS1 gives the output from prograin haTpeT_g.

................. HARP .......................

- The Hybrid Automated Reliability Predictor -

............ Release Version 7.0 .............

............... February 1893 ................

O.O0000000D+O0

0.99000000D+00

O.IO000000D-OI

Modelname:

3PDIS

Input description (from dictionary file):

Component type: 1 Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

O.IO000000D-02 +/-

FEHM file name: DIS.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration:

Permanent coverage:

Single-point failure:

NO near-coincident faults considered.

Time(in Hours): O.IOOD+02

State Probabilities

State name: F1 0.96552028D-06

State name: FSPF 0.29846563D-03

O.O0000000D+O0

Reliability = 0.99970057D+00

Unreliability = 0.29943115D-03

Total failure by redundancy exhaustion = 0.96552028D-06

GERJ< ODE solver: global error value 0.358D-IT

relative error value O.IOOD-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
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A10. Example 3P2B

These files are for a triplex processor and dual bus system witii the ESPN FEHM for

tile processors and the VALUES FEHM for the bus. The state probabilities differ from your

execution of this example. (See section 8.)

File 3P2B.DIC gives the output Dom program tdrive.

i PROCESSOR LAMBDA ESPN.FHM

INTERFERING COMPONENT TYPES: 2

2 BUS MU VALUES

INTERFERING COMPONENT TYPES:

FEIDS

7 6

File 3P2B.INT gives tile output _om program tdrive.

SORTED

I 2 3*LAMBDA;

1 3 2*flU;

2 4 2*LAMBDA;

2 5 2*NU;

3 5 3*LAMBDA;

3 6 MU*X;

4 7 LAMBDA*X;

4 8 2*NI;

5 8 2*LAMBDA;

5 6 MU*X;

8 7 LAMBDA*X;

8 6 NU*X;

FEHMFile ESPN.FHM

HARP.SINGLE.FAULT.MODEL

COVEKAGE INPUT PARAMETERS:

TIME DISTRIBUTION AND PARAMETERS

ACTIVE TRANSITION

BENIGN TRANSITION

TRANSIENT LIFETIME

DETECT TRANSITION

ERROR TRANSITION

ERROR-DETECT TRANSITION

UNIF O. 1.000

UNIF O. .5000

EXP i00.0 O.

UNIF O. .4000

WEBUL I0.00 2.500

WEBUL 50.00 .2500
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ISOLATIONTRANSITION

RECOVERYTRANSITION

RECONFIGURATIONTRANSITION

OTHERPARAMETERS:

NORML

ERLNG

NORML

PROBABILITYOFFAULTDETECTIONBYSELFTEST:

PROBABILITYOFERRORDETECTION:0.9000

PROB.OFISOLATINGDETECTEDFAULT:0.9000

NUMBEROFRECOVERYATTEMPTS: 5

PROB.OFSUCCESSFULRECONFIGURATION:0.9000

FRACTIONOFFAULTSWHICHARETRANSIENT:

FRACTIONOFFAULTSWHICHAREPERMANENT:

DESIREDCONFIDENCELEVEL:90%

ALLOWABLEERROR:10%

File 3P2B.MAT gives the output from program fifac_.

10

2 1

3*LAMBDA*C1;

3 1

2*MU*C2;

4 2

2*LAMBDA*C3;

5 2

2*MU*C2;

5 3

3*LAMBDA*C4;

6 3

MU*X;

6 5

MU*X;

6 8

MU*X;

7 4

LAMBDA*X;

7 , 8

LAMBDA*X;
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8 , 4

2*MU*C2 ;

8 , 5

2*LAMBDA*C5;

9 , 1

3*LAMBDA*SI+2*MU*S2;

9 , 2

2.LAMBDA*S3+2*MU*S2;

9 , 3

3*LAMBDA*S4;

9 , 4

2*MU*S2 ;

9 , 5

2*LAMBDA*S5;

10 , 1

3*LAMBDA*NI+2*MU*N2;

I0 , 2

2*LAMBDA*N3+2*MU*N2;

10 , 3

3*LAMBDA*N4;

10 , 4

2*MU*N2;

10 , 5

2*LAMBDA*N5;

0,0

File 3P2B.SYMgives theoutput from program flface.

C1

3

ESPN.FHM

C2

7

0.500000 0.000000

R2

8

0.300000 0.000000
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N2

9

0.000000 0.000000

$2

i0

0.200000 0.000000

C3

3

ESPN.FHM

C4

3

ESPN.FHM

C5

3

ESPN.FHM

X

999

ENDSYMBOLDEFINITION

F1

1007

F2

1006

FSPF

1009

FNCF

1010

END FAILURE STATE DEFINITION
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Files 3P2B.RS*give the output from program harpeng resulting from successive harpeng

executions. Each 3P2B.RS* file is the output from a subsequent execution of harpeng with

different multifault model specifications.

3P2B. RS 1

This listing is for 3P2B.RS1 for the same system previously presented with no near-coincident

fault model invoked.

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

Modelname:

3P2B

Input description (from dictionary file):

Component type: I Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

0.50000000D-02 +/-

FEHM file name: ESPN.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.50000000D+O0

Permanent coverage: 0.36375000D-01

Single-point failure: 0.46362500D+00

O.O0000000D+O0

Component type: 2 Name: BUS

Symbolic failure rate:

MU Constant failure rate:

0.50000000D-Of

FEHM file name: VALUES

Symbolic values:

C2

R2

*These values could*

*change with each *

* subsequent run. *

* (see section i0) *

+/- O.O0000000D+O0

Coverage factor, value directly specified:

0.50000000D+O0 +/- O.O0000000D+O0

Restoration factor, value directly specified:

0.30000000D+O0 +/- O.O0000000D+O0
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N2

$2

NCFfactor, value directly specified:

O.O0000000D+O0 +/- O.O0000000D+O0

SPFfactor, value directly specified:
0.20000000D+O0 +/- O.O0000000D+O0

NOnear-coincident faults considered.

GERKreport E201,Tolerancesreset:
Time(in Hours): O.IOOD+02

0.13159858D-06

0.81088630D-01

0.19924322D+00

O.O0000000D+O0

State Probabilities

State name: F1

State name: F2

State name: FSPF

State name: FNCF

O.IOOD-08 O.IOOD-08

*These values could change*

*(see section I0) *

Reliability = 0.71966802D+00

Unreliability = 0.28033198D+00

Total failure by redundancy exhaustion = 0.81088762D-01

GERK ODE solver: global error value 0.734D-11

relative error value O.IOOD-08

See Users Guide, section 3.3 for interpretation.

i Reports from the GERK ODE solver.

3P2B.RS2

This listing is for the 3P2B.RS2 file for the same previously described system with the

ALL-INCLUSIVE multifault model invoked. The state probabilities, reliability, and unreliability

values will change in each subsequent run. (See chaptcr 10.)

HARP

- The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

Modelname:

3P2B

Input description (from dictionary file):

Component type: i Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:
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0.50000000D-02 +/- O.O0000000D+O0

FEHMfile name:ESPN.FHM

For this FEHMmodel, the exit probabilities are:

(in the absenceof near-coincident faults)

Transient restoration: 0.50000000D+O0

Permanentcoverage: 0.36375000D-01

Single-point failure: 0.46362500D+00

Component type: 2 Name: BUS

Symbolic failure rate:

MU Constant failure rate:

0.50000000D-01 +/- O.O0000000D+O0

FEHM file name: VALUES

Symbolic values:

C2 Coverage factor, value directly specified:

0.50000000D+O0 +/- O.O0000000D+O0

R2 Restoration factor, value directly specified:

0.30000000D+O0 +/- O.O0000000D+O0

N2 NCF factor, value directly specified:

O.O0000000D+O0 +/- OoO0000000D+O0

S2 SPF factor, value directly specified:

0.20000000D+O0 +/- O.O0000000D+O0

ALL-INCLUSIVE near-coincident fault rate used.

Time(in Hours): O.IOOD+02

State Probabilities

State name: F1

State name: F2

State name: FSPF

State name: FNCF

0.13157227D-06

0.81088606D-01

0.19923770D+00

0.59530150D-05

*These could change*

*(see section 10) *

*These values could change*

*(see section 10) *

Reliability = 0.71966761D+00

Unreliability = 0.28033239D+00

Total failure by redundancy exhaustion = 0.81088738D-01

GERK ODE solver: global error value 0.348D-13

relative error value O.IOOD-08

See Users Guide, section 3.3 for interpretation.
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0 Reports from the GERKODEsolver.

3P2B.RS3

This listing is for the 3P2B.RS3file for the previoussystemwith SAME-typemultifault
mode]invoked.

HARP

TheHybrid AutomatedReliability Predictor -
ReleaseVersion 7.0

February 1993

0.50000000D+00

0.36375000D-01

0.46362500D+00

O.O0000000D+O0

C2 Coverage factor, value directly specified:

0.50000000D+O0 +/- O.O0000000D+O0

R2 Restoration factor, value directly specified:

0.30000000D+00 +/- 0.00000000D+00

N2 NCF factor, value directly specified:

0.00000000D+00 +/- O.O0000000D+O0

S2 SPF factor, value directly specified:

89

Modelname:

3P2B

Input description (from dictionary file):

Component type: 1 Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

0.50000000D-02 +/-

FEHM file name: ESPN.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration:

Permanent coverage:

Single-point failure:

Component type: 2 Name: BUS

Symbolic failure rate:

MU Constant failure rate:

0.50000000D-01 +/-

FEHM file name: VALUES

Symbolic values:

O.O0000000D+O0



0.20000000D+O0 +/-

SAME-TYPEnear-coincident fault rate used.

Time(in Hours): O.IOOD+02

State Probabilities

State name:F1

State name:F2

State name:FSPF

State name:FNCF

0.13159661D-06

0.81088627D-01

0.19924267D+00

0.59152289D-06

O.O0000000D+O0

Reliability = 0.71966798D+00

Unreliability = 0.28033202D+00

Total failure by redundancy exhaustion = 0.81088759D-01

GERK ODE solver: global error value 0.348D-13

relative error value O.IOOD-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

3P2B.RS4

This listing is _r the 3P2B.RS4 file _r the same previous system with the USER-defined

multifault model invoked.

HARP

The Hybrid Automated Reliability Predictor -

Release Version 7.0

February 1993

Modelname:

3P2B

Input description (from dictionary file):

Component type: 1 Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

0.50000000D-02 +/-

FEHM file name: ESPN.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration:

O.O0000000D+O0

0.50000000D+O0
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Permanentcoverage:

Single-point failure:
INTERFERINGCOMPONENTTYPES:2

Componenttype: 2 Name: BUS

Symbolic failure rate:

MU Constant failure rate:

0.50000000D-Of

FEHM file name: VALUES

INTERFERING COMPONENT TYPES:

Symbolic values:

0.36375000D-01

0.46362500D+O0

+/- O.O0000000D+O0

C2 Coverage factor, value directly specified:

0.50000000D+O0 +/- O.O0000000D+O0

R2 Restoration factor, value directly specified:

0.30000000D+O0 +/- O.O0000000D+O0

N2 NCF factor, value directly specified:

O.O0000000D+O0 +/- O.O0000000D+O0

$2 SPF factor, value directly specified:

0.20000000D+O0 +/- O.O0000000D+O0

INTERFERING COMPONENT TYPE near-coincident rate.

Time(in Hours): O.IOOD+02

State Probabilities

State name: F1

State name: F2

State name: FSPF

State name: FNCF

0.13157423D-06

0.81088609D-01

0.19923825D+00

0.53616071D-05

Reliability = 0.71966765D+00

Unreliability = 0.28033235D+00

Total failure by redundancy exhaustion = 0.81088740D-01

GERK ODE solver: global error value 0.348D-13

relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
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FEHMfile ESPN.FHMa_er running harpeng.

HARP.SINGLE.FAULT.MODEL

COVERAGE INPUT PARAMETERS:

TIME DISTRIBUTION AND PARAMETERS

ACTIVE TRANSITION

BENIGN TRANSITION

TRANSIENT LIFETIME

DETECT TRANSITION

ERROR TRANSITION

ERROR-DETECT TRANSITION

ISOLATION TRANSITION

RECOVERY TRANSITION

RECONFIGURATION TRANSITION

OTHER PARAMETERS:

UNIF O. 1.000

UNIF O. .5000

EXP I00.0 O.

UNIF O. .4000

WEBUL I0.00 2.500

WEBUL 50.00 .2500

NOKML 4.000 1.000

ERLNG I00.0 2.000

NORML 1.000 .5000

PROBABILITY OF FAULT DETECTION BY SELF TEST: 0.9000

PROBABILITY OF ERROR DETECTION: 0.9000

PROB. OF ISOLATING DETECTED FAULT: 0.9000

NUMBER OF RECOVERY ATTEMPTS: 5

PROB. OF SUCCESSFUL RECONFIGURATION: 0.9000

FRACTION OF FAULTS WHICH ARE TRANSIENT: 0.5000

FRACTION OF FAULTS WHICH ARE PERMANENT: 0.4000

DESIRED CONFIDENCE LEVEL: 90%

ALLOWABLE ERROR: 10%

** Cut here if parameters in FEHM have changed **

** to obtain new simulation results. Rerun harpeng. **

SIMULATION RESULTS:

R EXIT:

PROB[REACHING EXIT]:

IST MOMENT:

2ND MOMENT:

3KD MOMENT:

C EXIT:

PROB[REACHING EXIT]: LOW=O.32931688E-OI NOM=O.36375000E-OI HIGH=O.39818312E-OI

IST MOMENT: LOW= 3.2281735 NOM= 3.5878440 HIGH= 3.9475146
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LOW=0.4908041? NOM=0.50000000 HIGH=0.50919583

LOW=O.48844865E-02 NOM=O.51583926E-02 HIGH=O.5432298?E-02

LOW= O. NOM=O.13748132E-03 HIGH=O.15ZZ1914E-02

LOW=O.52741874E-05 NOM=O.52741874E-05 HIGH=O.52741874E-05



2NDMOMENT: LOW= O.

3RDMOMENT: LOW= O.

S EXIT:

PROB[REACHINGEXIT]: LOW=0.45098586

IST MOMENT: LOW=3.2217696

2ND MOMENT: LOW= O.

3RD MOMENT: LOW= O.

NOM= 26.736224

NOM= 202.06828

HIGH= 119.16996

HIGH= 1027.6762

NOM=0.46362500 HIGH=0.47626414

NQM= 3.2808923 HIGH= 3.3400150

NOM= 25.452089 HIGH= 186.29844

NOM= O. HIGH= O.
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Appendix B

Modeling Advanced Fault-Tolerant

Systems With HARP
Since the original draft of the tutorial wa.s written, the HARP developers have explored

the possible uses of the dynamic fault tree gates. Many of models involving the use of the

dependency fault tree gates were published ir_ sew_'ra] conference proceedings and journals. One

of these papers (ref. 23) is included in this at)pendix to illustrate the powerfill modeling flexibility

of tile dynamic fault tree gates (ref. 24) and to encourage the reader to further explore their

applications through I.t,,_, published literature (refs. 25 to 30). Part of the work emt)odied in this

paper is the work of the U.S. Government and thus may be used for government purposes; any
other use is not authorized.
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Modeling Advanced Fault Tolerant Systems with HARP

Summary

Reliabdity analysis of fault tolerant computer systems for critical applications is complicated by several

factors, In this tutorial, we discuss these modeling difficulties and describe and demonstrate dynamic fault

tree modelJ1_g !echniq,_,'s for handling them The techniques described include behavioral decomposition, a

Markov solution of a fault tree, and the use of special purpose gates in the fault tree to model sequence

dependent behavior. Several advanced fault tolerant computer systems are described, and fault tree models

for their analysis are presented. These systems include a loosely-coupled distributed system, a system of fault

tolerant building blocks, a fault tolerant parallel processor, a mission avionics system and several instances

of fault tolerant hypercube architectures. HARP (the Hybrid Automated Reliability Predictor) is a software

package developed at Duke University and NASA Langley Research Center that is capable of solving the fault

tree models presented int this tutorial.

Knowledge of fault tree and Markov modeling is assumed. The emphasis of this tutorial is on techniques

for constructing a dynamic fault tree model of advanced systems. This fault tree will be solved using Markov

methods. We assume that the modeler will use some software package for solution of the model; a mathematxcal

discussion of so|ution techniques is not included.
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Part I

Background

1 Introduction

Fault tolerant computer systems for critical applications

are characterized by several factors which complicate

their analysis. Systems designed to achieve high levels

of reliability frequently employ high levels of redundancy,

dynamic redundancy management, and complex fault and

error recovery techniques. In this tutorial we consider
advanced fault tree modeling techniques to include these

factors in the analysis of system reliability.

In this tutorial, we assume the following

• Faults occur randomly and are statistically indepen-

dent.

• Lifetime distributions are exponential. Faults occur

at a constant average rate, which is referred to as the

failure rate of the component.

• Mission lengths are relatively short, so that the prob-

ability of more than a few failures is low.

• The systems are not repairable while in use.

Systems which violate these assumptions can be handled

by more sophisticated techniques which fall outside the

scope of this tutorial.

There are several possible for the reliability analysis of

fault tolerant computer systems for critical applications.

In addition to predicting the reliability of the system for

a specified mission time, these techniques can facilitate

tradeoff analysis for various fault tolerant techniques, or

can be used to compare alternative architectures for a

system still in the design phase. Even if a system exists

only as a rough sketch on paper, analysis techniques can

be used to analyze parametric sensitivity in order to de-

termine which factors have the strongest impact on the

reliability of the system.
Fault trees are frequently used for reliability analysis

of critical systems. Fault tree models are well accepted
and solution methods are well known, but exact analy-

sis of fault trees with many basic events is often expen-

sive, both in terms of developing the model and in solving

the model once it is developed. Also, several important

types of dynamic behavior in advanced fault tolerant sys-

tems cannot be adequately captured in a standard fault

tree model. These dynamic behaviors include transient

recovery, intermittent errors, and sequence dependency.

Markov models present an alternative modeling technique

that is flexible enough to model nearly any such dynamic

system. Tools and techniques exist for the solution of

even very large Markov models. However, the construc-

tion of a Markov model for any but the simplest system

can be tedious and error prone.

To exploit the relative advantages of both fault trees

and Markov models, while avoiding many of the short-

comings, we define a model that is flexible enough to

capture the dynamic aspects of the system, but which

is (almost) as easy to use as a standard fault tree The
model construction and solution process is facilitated by

the new model in three major ways, which are defined

and demonstrated via example in this tutorial.

• Behavioral decompos=t=on is used to separately define

models for system structure and fault recovery.

• Several additional gates are introduced into the fault

tree model to capture dynamic behavior.

• The fault tree model of system structure is internally

and automatically converted to a Markov model, to
which is added the fault recovery information.

These techniques have been implemented in HARP (the

Hybrid Automated Reliability Predictor), a software

package for the analysis of advanced fault tolerant sys-

tems, developed by NASA Langley Research Center and

Duke University.

The models exampled described are all solved IJsing

HARP. For more information about the availability of

HARP, contact Sal Bavuso at the NASA Langley Re-
search Center, Mail Stop 478, Hampton, VA, (804) 8Ct-

6189. The techniques implemented in HARP are de-

scribed in more detail in other publications. References

[2, 10, 16, 19] are general papers describing HARP. More
details of the models presented here, as well as other mod-

els using HARP appear in [1, 4, 5, 11, 8]. Modeling tim

recovery process is covered in detail in [9].

2 Behavioral decomposition

A common approach to modeling complex systems con-

sists of structurally dividing the system into smaller sub-

systems (e.g. processors, memory units, buses), analyzing

the dependability of the subsystems separately, and then

combining the subsystem solutions to obtain the system

solution. A system level analysis can then be effected by
analyzing each subsystem separately and combining the
results to obtain the final solution. This structural de-

composition is allowed only if the subsystems' fault tol-

erant behaviors are mutually statistically independent.

An alternative to such a structural decomposition is

behavioral decomposition. Generally, the time scale for
the occurrence of faults and their associated errors is rel-

atively long (i.e. weeks or months) while the time scale

for recovery is relatively short (milliseconds). Behavioral
decomposition exploits this time scale difference, by al-

lowing an analyst to describe the two behavior types (oc-

currence and recovery) in separate models.

Using behavioral decomposition, the model is decom-

posed into fault-occurrence and repair (FORM) and fault

O 1991 A_auaJ RE25AIIIIX_ AND N_INTAINABIIX_ S._posft_ FTS- 1
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( )

Figure 1: Fault tree model of example system

Figure 2: Markov chain model of example system

and error handling (FEHM) submodels. The FORM con-
tains information about the structure of the system and

the fault arrival process. The FEHM (often called the

coverage model) allows for the modeling of permanent,
intermittent, and transient faults, and models the on-line

recovery procedure necessary for each fault type. We de-

scribe this process of model construction by way of a sim-

ple three processor, two memory (3P2M) example system.

2.1 The fault occurrence and repair

model (FORM)

We wish to model a computer consisting of three pro-

cessors and two shared memories (3P2M) communicating

over a shared bus. The system is operational as long as

one processor can communicate with one of the memo-

ries. We describe the system structure model as a fault

tree, as shown in figure 1, where the top event, System

Failure is caused by bus failure OR all processors failing,

OR both memories failing. The abbreviation for the com-
bined basic event i * j represent, i statistically indepen-

dent occurrences of component type j.
Figure 2 shows the (continuous time) Maxkov chain

Fsuit occurs

T_ Fault and Per_manen
Error

restorstlo_ Handling t• Model Icoverage
exit I FEHM IexiL

SI$1ngle-p o_nL
failure exit

Figure 3: General structure of FEIIM

representation of the system whose fault tree is shown

in figure 1. The states are labeled with an ordered triple,
where element

1. denotes the number of operational processors,

2. denotes number of operational memories, and

3. denotes the state of the bus.

An arc between states (i,j,k) and (i- 1,j,k)is labeled

with i * A ( where I is the failure rate of processors).

Likewise, an arc between states (i,j, k) and (i,j- 1, k)is

labeled with j * p (where p is the failure rate of memory

unit.). The failure rate of the bus is a.

F1 represent, exhaustion of the processor cluster

F2 represents exhaustion of the memories, and

F3 represents failure of the bus.

The fault tree in figure 1 can be automatically con-

verted to the Markov chain in figure 2. All possible oc-

currences of basic events that leave the system operational

are enumerated; each combination becomes a state in the
Markov chain.

The advantage of allowing a fault tree description of the

system is that the modeler need not perform the tedious

task of determining the Markov chain representation of a

system that can be described as a fault tree. Very often,
a relatively simple fault tree can give rise to a very large

and complicated state space in the corresponding Markov

chain. The modeler can use the parsimony of the fault

tree representation of the system to generate the state

space of the Markov chain automatically, and then make

adjustments to the Markov chain as needed.

2.2 The fault and error handling model

(FEHM)

We next concentrate on modeling the detailed behavior
of the system when a fault occurs. The general structure

F'rS - 2 Dugan, eL_ at. 199t AR&MS l_Jtorqal Hotes
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of a model that represents the recovery proce_ that is
initiated when a fault occurs is shown in figure 3. The

entry point to the model signifies the occurrence of the
fault, and the three exits signify three possible outcomes.
The transient restoration exit (labeled R) represents the

correct rccog.itlon or a.d recovery from a tra,sie.t fault.

A I.r_umicltL iN tmually caum_d I)y cxLernltl ur q,llvironluell-

ta] factors, such as excessive heat or a "glitch" in the

power liue. It is generally believed that the vast majority
of faults are transient. Successful recovery from a tran-

sient fault restores the system to a consistent state with-

out discarding any components, for example by retrying
an instruction or rolling back to a previous checkpoint.
Reaching this exit successfully requires timely detection
of an error produced by the fault, performance of an ef-

fective recovery procedure, and the swift disappearance
of the fault (the cause of the error).

The permanent coverage exit (labeled C) denotes the
determination of the permanent nature of the fault, and

the successful isolation and removal of the faulty compo-

nent. The single point failure exit (labeled S) is reached
when a single fault causes the system to crash. This gen-
erally occurs if an undetected error propagates through
the system, or if the faulty unit cannot be isolated and

thus the system cannot be reconfigured.

As an example of a FEHM for the memory subsys-

tem of figure 1, assume that single-bit memory errors
(which are 98% of all memory faults) can be masked and
faults that affect more than one memory bit are 95% de-

tectable. Upon detection of a multiple memory error,
the affected portion of memory is discarded, the memory
mapping function is updated, and the needed informa-
tion is reloaded from a previous checkpoint and updated

to represent the current state of the system. The first two
moments I of the time to perform this recovery have been

determined by experiment to be 0.45 and 0.25 (time scale

in seconds). Experimentation also revealed that this re-
covery from the detected multiple memory errors is 85%
effective. It follows that a memory fault causes a single

point failure (in zero time) with probability 0.00385 [=
0.02 * (0.05 + 0.95'0.15)] if it causes multiple errors and
is not detected or is not recoverable. This behavior can be

captured in a FEHM model by providing the probability
of reaching each of the three exits and by providing the
first few moments of the time to reach each exit. Figure

4 is a pictorial representation of the recovery process for

the memory subsystem.

The recovery process for the faults that occur in the
processor is more complex. When a fault occurs in a

processor, a multi-step recovery process commences.

1. Wait for 0.1 second and do nothing, in the hope that
the fault is transient and will disappear.

z If, in successive experiments, recovery times are Tz, T_..... T_,

then the mean (first moment)is _ _-_. 1 Tj and the second moment

I ERROR OCCURS !

too,t,0,.I
I :;r?:rY 1 i mem°ryerr°rl

I error masked . 5
in zero time [ deksctsd I [ not I

transient [ / detectedIrestoration
I failure

exil

[ attempted exitR
I recovery $
I takes .45
I seconds

, succe sslUOIS_ui2ucce ssfull

reconflgurstton fsllure
exit exit
C S

Figure 4: Recovery model for memory subsystem

PEI - CR

(,-cm PF, IpR' "_ _'_

No,ms, I ( '_:'_:2""'1

Figure 5: ARIES transient fault recovery model
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2. Retry the offending computation several times,

which takes, say 0.5 seconds.

3. If the fault still persists, a rollback to a previous

checkpoint followed by recomputation is performed,

taking 2 seconds total.

4. If the fault still persists then it is assumed to be

permanent, and a permanent recovery process is ini-
tiated.

In all, there are up to 3 phase, of transient recovery, pos-

sibly followed by a permanent recovery. The 3 phases of

recovery succeed (i.e. the system is operational at the

conclusion of the phase) with probabilities 0, 0.5, and

0.8, respectively; the permanent recovery process suc-

ceeds with probability 0.875. The average lifetime of a
transient fault is 0.5 seconds. The ARIES transient recov-

ery model (shown in figure 5) represents a multi-phase re-
covery process that executes n successive recovery phases,

and is used to model the recovery process for processor

failures. The parameters shown on the ARIES model in

figure 5 are calculated from the input parameters that

describe the recovery process.

2.3 Near-coincident faults

In highly reliable systems, such as those used for flight

control, the probability of a second fault occurring while

attempting recovery from a given fault cannot be ignored.

The occurrence of a second, near-coincident fault (while

attempting to handle a single fault) causes immediate sys-
tem failure, if the second and first faults are critically

coupled. The modeler must designate which sets of faults

are critically coupled, or can assume either extreme: all

faults are critically coupled or no faults are critically cou-

pled. Once the set of critically coupled faults has been

determined, the calculation of the probability of near-

coincident faults is straightforward, given some measure

of the time spent in a recovery model. In the 3P2M ex-

ample, if a processor fails while a memory failure is being
handled, or during the recovery from a fault in another

processor, the system fails. If, however, a memory fails

during a processor recovery, no immediate failure occurs.

A bus failure would interfere with processor or memory
recovery.

A fourth exit is then added to the FEHM model, rep-
resenting the occurrence of a near-coincident fault be-

fore another exit is reached. Consequently, the probabil-

ity of reaching one of the original three exits is reduced

by a factor equaling the probability that an interfering

near-coincident fault does not occur. This single-entry 4-

exit model is then automatically inserted into the FORM

model, as described in the following section.

Cause of Failure Probability
Exhaustion of Proce_mors 2.20 x 10-_°

Exhaustion of Memories 1.61 x 10-10

Exhaustion of Busch 9.99 x 10 -s

Single Point Failure 3.53 x 10 -5

Near-Coincident Faults 4.49 x 10 -_°

Total Unreliability 4.53 x 10 -5

Table 1: Solution of 3P2M example system

2.4 Combining FORM and FEHM mod-
els

Once the FORM and FEHM models are described, they

are then combined. We demonstrate this process for the

Markov chain in figure 2 which results from the fault

tree in figure 1. For each failure of a redundant com-

ponent, the appropriate FEHM model is invoked. That

is, a FEHM model is inserted on each failure arc between

operational states in the Markov chain, as shown in figure

6. In the 3P2M example, the FEHMs on the horizontal

failure arcs are copies of the ARIES model (figure 5),

while the FEHMs on the vertical failure arcs are copies of

the memory coverage model (figure 4). Two failure states
are inserted:

• FSPF denoting the occurrence of a single-point fail-
ure, and

• FNCF denoting the occurrence of critically coupled
near-coincident faults.

Each FEttM model is then solved for the probability of

reaching each of its three exits, and the FEHM model is

replaced by a branch point. The resulting Markov chain
(see figure 7) is then solved for the reliability of the sys-

tem, which is given by the probability that the system is
not in any failure state.

Table 1 shows the results of the reliability analysis for

a 10 hour mission of the 3P2M example. For this model.

we assume that the failure rate of the processor ._ = 10 -4,
for the memory _t = 10 -s and for the bus tr = 10 -6 . Tile

largest contributor to the unreliability is single-point fail-

ure, that is, faults from which recovery is not successful.

3 Dynamic fault-tree gates

A major disadvantage of traditional fault tree analysis

is the inability of standard fault tree models to capture
sequence dependencies in the system, and still allow an

analytic solution. As an example of a sequence dependent

failure, consider a system with one active component and

one standby spare connected with a switch controller [15]

If the switch controller fails after the active unit fails (and

thus the standby is already in use), then the system carl
continue operation. However, if the switch controller fails

before the active unit fails, then the standby unit cannot

be switched into active operation and the system fails.
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Figure 6: Combination of FEIIM and FORM models
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Figure 7: Reduction of combined FEHM and FORM models
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Thus, the failure criteria depend not only on the com-

binations of events, but also on the sequence in which
events occur.

Systems with various sequence dependencies are usu-

ally modeled with Maxkov models. If, instead of using

standard fault tree solution methods, the fault tree is

converted to a Maxkov chain for solution, the expressive

power of a fault tree can be expanded by allowing cer-

tain kinds of sequence dependencies to be modeled by

defining special purpose gates to capture specific types of

sequence dependent behaviors. There are several different

kinds of sequence dependencies in fault tolerant systems.

This section identifies several such dependencies, and de-

fines specific gates to express these behaviors in fault tree

models. Part II demonstrate the use of these gate types

in several examples.

3.1 [kanctional dependency gate

Suppose that a system is configured such that the occur-

rence of some event (call it a trigger event) causes other

dependent components to become inaccessible or unus-

able. In this case, later failures of the dependent compo-

nents will not further affect the system and should not

be considered. A funchonal dependency gate {see figure

8) has a single trigger input (either a basic event or the

output of another gate in the tree), a non-dependent out-

put (reflecting the status of the trigger event) and one or

more dependent basic events. The dependent basic events

are functionally dependent on the trigger event. When

the trigger event occurs, the dependent basic events are

forced to occur. In the Markov chain generation, when a

state is generated in which the trigger event is satisfied,

all the associated dependent events are marked as having

occurred. The occurrence of any of the dependent basic

events has no effect on the trigger event.

The functional dependency gate is useful where com-

munication is achieved through some network interface el-
ements, where the failure of the network element isolates

the connected components. In this case, the failure of the

network element is the trigger event and the connected

components are the dependent events. Part II describes

several applications of the functional dependency gate.

3,2 Cold spare gate

Consider a system that utilizes cold spares, that is, spare

components that axe unpowered, and thus do not fail be-

fore being used. Such systems cannot be modeled exactly

using standard fault tree techniques because the system
failure criteria cannot be expressed in terms of combina-

tions of basic events, all using the same time frame.

We address this fault tree deficiency by introducing a

cold spare gate (see figure 9), with one primary input and

one or more alternate inputs. All inputs are basic events.

The primary input is the one that is originally powered

on, and the alternate input(s) specify the (initially un-

powered) components that are used as replacements for

the primary unit. The cold spare gate has one output

which becomes true after all the input events occur.

The conversion of the fault tree to a Markov chain

makes the consideration of cold spares possible. In a state

where the primary unit is operational, the cold spares are

not permitted ,'o fad. floweret, once the primary unit

has failed, then the first alternate unit can fail. After

the first alternate fails, the remaining alternates are al-

lowed to fail, one at a time in the order specified, unti[

the spares are exhausted. The possibility of being unable

to reconfigure correctly the spare unit into operation is

captured in the (separately specified) coverage model.

The functional dependency gate and the cold spare gate

can interact in an interesting way. Suppose that the spare

units are functionally dependent on some other (other-

wise unrelated) component. The occurrence of the trigger

event can render one or more of the spares unusable, even

if they have not been switched into active operation yet.

Then, if the primary unit fails, the spares are unavailable

to replace it. This is the one case where a spare can "fail"

even while it is unpowered Part II gives examples of the

use of the cold spare gate.
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Figure 11: Cascading priority-AND gates

3.3 Priority-AND gate

The priority-AND gate is logically equivalent to an AND

gate, with the added condition that the events must occur

in a specific order. The priority-AND gate (as shown
in figure 10) has two inputs, A and B. The output of
the gate is true if both A and B have occurred, and if
A occurred before B. If both events have not occurred,

or if B occurred before A then the gate does not fire.

To represent the behavior that A occurs before B which

occurs before C, the priority-AND gates can be cascaded

as shown in figure 11.

Gate Output

Figure 12: Sequence enforcing gate

3.4 Sequence enforcing gate

The sequence enforcing gate forces events to occur in a

particular order. The input events are constrained to oc-

cur in the left-to-right order in which they appear under

the gate (i.e., the leftmc_t event must occur before the

event on its immediate right which must occur before the
event on its immediate right is allowed to occur, etc.}.

There may be any number of inputs (see figure 12), the
first of which may be a (po_ibly replicated) basic event

or the output of some other gate. All inputs other than
the first are limited to being (po_ibly replicated) basic

events. The sequence enforcing gate can be contrasted
with the priority-AND gate in that the priority-AND gate

detects whether events occur in a particular order (the
events can occur in any order) where the sequence enforc-
ing gate will only allow the events to occur in a specified
order.

In the generation of a Markov chain from a fault tree
containing a sequence enforcing gate, states that repre-

sent any other ordering than that specified by the se-

quence enforcing gate are never generated. In part 2 of

this tutorial we will show an interesting application of the
sequence enforcing gate to model pooled spares.
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Part II

Examples

We study several examples of advanced fault tolerant sys-

tems, and develop fault tree models to analyze the reli-
ability of these systems. The models ate all solved with

HARP, the Hybrid Automated Reliability Predictor, de-
veloped at NASA Langley Research Center and Duke

University. The parameters used for these model and the

details of the recovery mechanism are pure conjecture,

and should not be interpreted as a factual representation
of the parameters associated with the systems.

4 Cm*: a loosely-coupled dis-

tributed system

4.1 System description

An instance of the Cm*system (shown in figure 13) con-
sists of 2 clusters of processors and memories connected

by links [18]. Each cluster consists of 4 local switch inter-
face controllers (S.Iocals), each attached to one processor

and one 12K memory module. Each processor has 4K of

memory on board. The K.map is a cluster controller con-
necting the S.Iocals; the clusters are connected by inter-

cluster communications (L.zac). A fault in the K.map

renders the associated S.Iocals (and their connected pro-
cessors and memories) inaccessible, while a fault in an

S.Iocal makes the processor and memory modules con-
nected to it inaccessible.

The Cm* system exhibits three characteristics that are

typical of reliable distributed systems.

i. There are functional interdependencies which can
make the development of the fault tree model diffi-

cult, for example, the dependence of the accessibility

of ti:, processors and memories on the state of the
S. locals.

2 There are many potential system states: since there
are 27 components, the system can be in any one of

2_7 > 134 million states, if any component can be in

one of two states, functional and failed.

3. There are many failure modes: there are 5405 min-

imal cut sets for this system (a cut set is a set of

components whose failure causes the system to fail).

4.2 Failure criteria

The system is considered operational as long as there are
3 processors that can communicate with 3 memories. As

long as the L.inc is operational, these requirements can

be satisfied by the components of both clusters. But, if
the L.Inc fails, the requirements must be met within one
cluster.

tick

$$

Figure 14: Fault tree model of Cm* system

4.3 Fault tree model

The development of the fault tree model of the Cm* sys-

tem is simplified by the use of a functional dependency

gate, to capture the interconnection dependencies. A
fault tree model of the Cm* system is shown in figure

14. System failure (the top event) can be attributed to

one of two causes which are shown as inputs into the up-

permost OR gate. Failure occurs when either the L.inc

fails and the requirements cannot be satisfied by a sin-

gle cluster (the left input to the uppermc_t OR gate), or

(independent of the state of the L.inc) there are an in-

sufficient total number of processors or memories in both

clusters. The output of an m/n gates is true when m of

the n input events have occurred.

The functional dependencies of the S.iocsls on the

K. maps and of the processors and memories on the asso-

ciated S.Iocal are captured in the functional dependency

gates (FDEP) shown in figure 14. In this case, there

were no explicit reliability requirements concerning the

K.maps or S.Iocah, so the functional dependency gate

is not explicitly connected to the top event in the fault

tree. In order to solve a fault tree model containing func-

tional dependency gates via standard combinatorial solu-

tion methods, we need to convert the model to a strictly

combinatorial one. To accomplish this conversion, the

dependency gates can be replaced with OR gates in the

following manner. For each occurrence of a dependent
basic event, replace that basic event with a logical OR of
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Figure 16: An AIPS I/O network used for example cal-
culations

the basic event and its trigger event. Thus in the Cm*

system, each 'basic event representing a processor failure

is replaced by a logical OR of that processor event, its
S.Iocal and its K.map. Memory events are altered in a

similar manner. The fault tree that results from replac-
ing the functional dependency gates is shown in figure 15.

The replacement of the functional dependency gates only

produces a correct result if no FEHM models are used,

that is, if all faults are permanent and are instantaneously
and perfectly covered.

5 AIPS: a system of fault-

tolerant building blocks

5.1 System description

An example of the AIPS (Advanced Information Process-

ing System) I/O network is shown in figure 16. The AIPS

system, designed at the Charles Stark Draper Laboratory,

is intended to provide fault-tolerant building blocks that

can be used for a variety of real-time control applications

[12]. The AIPS I/0 network might be used in a flight con-

trol system, and consists of 3 rings, each of which contains
5 nodes. Three of the nodes on each ring (those labeled A,

B, E) are connected to sensors and/or actuators. Each

such device is triplicated, with one copy of each device

connected to each ring, via a node in the same location

(with the same letter label). The remaining two nodes,

C and D, are termed root nodes because they provide the

connections to the triplicated computers.

5.2 Failure criteria and parameters

The I/O network fails when

1. Nodes in the same location on two different rings
either fail or become isolated from both root connec-

tions, OR

2. if 2 of the 3 computers fail or become disconnected

from both rings, OR

3. when 2 of the three rings become disconnected from

both computers.

As long as a node can communicate with one computer, it

can communicate with all computers that are up because

the computers are assumed to be connected by a perfectly

reliable interconnect|on mechanism (such as shared mem-

ory). For the purpose of this analysis we consider only the
1/O network and the computer connections, and not the

possible failures of the devices (such as sensors and ac-

tuators) connected to the nodes. The failure parameters

used for this analysis are

• Node failure rate: 6 x 10 -e per hour

* Link failure rate: 12x 10 -s per hour

* Computer failure rate: 10 -4 per hour

5.3 Fault recovery

Recovery from faults in nodes and links is assumed to

be perfect and instantaneous. For the computers, how-

ever, more detailed coverage modeling is necessary. It

is assumed that 85 percent of the faults that occur m

the computer system are transient, with the remaining 15
percent being permanent or intermittent in nature. Re-

covery from computer faults is assumed to be perfect, but
not instantaneous: the time to recover from a transient

is 1 second, while the time to recover from a permanent

or intermittent is uniformly distributed between 1 and 5

seconds. During the recovery interval, if a second, near-

coincident fault occurs in either of the other computers,

the recovery is interrupted, and system loss is conserva-

tively assumed to occur.

5.4 Fault tree model

The fault tree model of the AIPS l/O network ha.s 102

nodes, including 39 basic events, and is too large to be

presented here as a whole, ttowever, figure 17 is a sketch

of the fault tree with some of the paths complete. The

system fails when one of the seven triplicated subsystems

fail (hence seven 2/3 gates are connected to the top OR

gate), these being node groups A through E, the comput-

ers, and the root connections between the rings and the

computers. A representative of each of the 7 subsystems

is shown in detail; the other members of each triplicated

subsystem are analogous. The results of the solution of

this model appear in table 2.

5.5 Truncated fault tree

An interesting alternative to the development of the full
fault tree model is the concept of a truncated fault tree
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Full Fault Tree Model Solution

AIPS I/O Network Example System

Truncation Level 1 Component Failure 2 Component Failures

Size Of Truncated Model 42 states, 190 transitions 770 states, 5155 transitions

Lower Bound on Unreliability 0.125e-6 0.126e-6

Upper Bound on Unreliability 2.94e-6 0.128e-6
Total Run Time 65 CPU seconds 1295 CPU seconds

Table 2: Solution of example AIPS system

A I
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Figure 17: Fault tree model of AIPS I/O network
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Figure 18: Truncated fault tree model of AIPS network

For the AIPS network (figure 16), the expansion of only
2 failure levels produced a reasonably accurate estimate

of the system unreliability. For this ease, we could have

produced a similar result with a much simpler fault tree,
one which explicitly defined only the 2 component failure

combinations. Consider the fault tree representation of

the AIPS network in figure 18. The top event of this tree
is 2-component failure system loss, where the system loss is

caused by losing 2 members of any triplicated subsystem.

No combination of 2 link failures, or one link failure and

one other component failure can lead to system failure,

and so the link basic events do not input to any gates in

the truncated fault tree. The presence of these dangl|n 9

basic events (basic events that do not input to any gate
in the fault tree) can be used to bound the failure prob-

ability, if the dangling basic events are ignored then the
solution of tile fault tree gives an optimistic estimate of

the unreliability of the system.

If we are using a strictly combinatorial solution

method, we can use the dangling basic events to deter-
mine the upper bound on the unreliability by using a

k-out-of-n gate. Connect all n basic events (those that
are dangling as well as those that are not) to an 3-out-of-

n gate (a gate that is activated on the third component
failure), and OR its output with tile top event of the tree.

This is equivalent to assuming that the third component

failure causes system failure.

If we need to include the effects of imperfect coverage
in the model, we can use the dangling basic events in con-
junction with the conversion of the fault tree to a Markov
chain. As the Markov chain state space is expanded, all

the basic events become part of the state definition. The

resulting Markov chain can be used to produce bounds
on the unreliability of the system from the solution of

the truncated fault tree. It is not necessary in this case

to add the m-out-of-n gate as was done with the strictly

combinatorial solution. The basic events are simply left
dangling. The presence of dangling basic events is cru-
cial to the determination of correct bounds on the system

unreliability.

The solution of the truncated Markov chain corre-

sponding to the truncated fault tree of the AIPS system
is shown in table 3. A comparison of the numbers in this
table with those in table 2, shows that the truncated fault

tree can give reasonable results. The time needed by a

reliability analyst to determine a truncated fault tree is
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Truncated Fault Tree Model Solution

AIPS I/O Network Example System

Truncation Level I Component Failure 2 Component Failures
Size Of Truncated Model 42 states, 190 transitions 770 states, 4879 transitions

Lower Bound on Unreliability

Upper Bound on Unreliability
Total Run Time

0.126e-6 0.1261e-6
0.640e-6 O.1263e-6

58 CPU seconds 1144 CPU seconds

Table 3: Solution of truncated fault tree model of AIPS system

Network elementa. NE3

Processing
elements

1

7/ ,

_ _ecl_ndary
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coatalnment
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Figure 19: An instance of the fault tolerant parallel pro-
celgflor

substantially less than the time required to derive a com-

plete fault tree model of a system. Further, the combi-

nation of a truncated solution technique and a truncated

fault tree can allow more faith to be placed in the model,

since if there are missing failure combinations they may

be accounted for by the bounding technique.

6 FTPP: Fault tolerant parallel

processor

6.1 System description

Next we consider several models of the FTPP (Fault Tol-

erant Parallel Processor) [14, 13] cluster, to compare var-
ious configurations of triads with spares. An instance of
an FTPP cluster is shown in figure 19, and consists of 16

processing elements (PE), with 4 connected to each of 4

network elements (NE). The network elements are fully
connected. In the clusters modeled here, the 16 proces-
sors are logically connected to form 4 triads, each with

one spare. We investigate three triad/spare configura-
tions, the first two with hot spares and the third with
cold spares:

#1 utilizes hot spares; there is one spare for each triad

and all spares are attached to the same network ele-
ment.

# 2 also uses hot spares; there is one spare on each net-

work element and the spare PE can substitute for any
failed PE attached to the same network element.

# 3 is the same as #1, with all spares on the same NE,

but in configuration #3 the spares are cold.

The processing elements in all three configurations
functionally depend on the network element to which they

are connected. If a network element experiences a perma-

nent failure, the processing elements connected to it are
then considered failed.

6.2 Failure criteria and parameters

For all models, a triad fails when it has fewer than 2 active

components; the system fails if any triad fails. Failures

occur at a constant rate of I.I x 10 -4 per hour for pro-
cessing elements, and 1.7 x 10 -5 per hour for network
elements.

6.3 Fault recovery

Recovery and reconfiguration from faults in processing el-
ements are both perfect, but take a non-zero amount of

time. lfa second fault occurs in any other component dur-
ing attempted reco-_ery from a first fault, the system fails.

Half of the faults that occur in the processing elements are

transient, and can be recovered from without discarding
the affected component. The remainder of faults are per-

manent. The time to recover is exponentially distributed
with a mean of 3.6 seconds. Coverage of NE failures is

both instantaneous and perfect.

6.4 Fault tree models

6.4.1 Configuration _1

Configuration #1 (shown in figure 20) divides the active
elements of a triad among NE1, NE$ and NE3, and uses

the PE's on NE_ as spares. The PE's that are in the same
relative position on the first three network elements form

a triad, and the PE in the same relative position on NE_

serves as a hoe (active) spare for the triad.
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Figure 20: Configuration #1 with one spare per triad
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Figure 22: Configuration #2 with one spare per NE

The fault tree model for configuration #1, shown in
figure 21, uses four functional dependency gates (FDEP)
to reflect the dependence of the processing elements on
the network elements. The FDEP gates are not explic-

itly connected to the other gates in the tree, since the
reliability requirements (all 4 triads must be operational)
do not explicitly mention the network elements. Figure

21 shows four 3/4 gates connected to the top OR gate,

one 3/4 gate for each triad. A triad fails when only one

element remains (3 of the 4 elements have failed).

6.4.2 Configuration #2
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Configuration#2 is an FTPP cluster with hot spares dis-

tributed across the network elements instead of grouped
on the same network element (see figure 22). The spare

element on each network element can substitute for any

failed PE connected to the same NE. That is, processing
element TSt can substitute for a failed PE connected to

NEI.

The fault tree model of this system is a bit more com-

plex than the one presented in section 6.4.1, and is shown

in figure 23. The functional dependency gates FDEP

again reflect the dependence of the processing elements

on the network elements. A triad failure is again at-
tributed to losing the majority of operational elements,
but it is more difficult to describe the failure of a member

of the triad. A member of the triad is failed if it and

its spare fail or if its spare is not available when needed.
The spare is not available if some other PE on the same

NE fails and uses the spare before it is needed by the

first PE For example, in figure 23, the leftmost OR gate

that inputs into the leftmost 2/3 gate represents the fail-
ure of the first member of the first triad. This member

fails if both Tlt (the first member of the first triad) and

its spare (TSt) fail, or if the spare is being used because

another failure has already occurred when Tll fails. The
spare will already be in use when Tlt fails if either T2_ or

T3z (the other two active components on the same NE)
have failed before Tll does. This condition is reflected in

the Priority-AND gate that inputs to the same OR gate.
There is a similar structure of AND and Priority-AND
gates to represent the failure of the other members of the
triads.

6.4.3 Configuration #3

The third configuration is used to investigate the effect on
reliability of keeping the spares unpowered until needed

The FTPP configuration modeled in this section is the

same as configuration #1 (figure 20) except that the
spares are cold rather than hot. There is one spare for
each triad, and all spares are connected to the same net-
work element. The fault tree model for this system, shown

in figure 24, uses the cold spare gate. There is one cold
spare gate for each member of each triad, where the ini-

tially active members of the triad are used as the primary
inputs. The basic event representing the cold spare PE is
connected to all three cold spare gates since it can sub-
stitute for any of the elements.

6.5 Results

This section presents the results obtained from solution

of the models of the three FTPP configurations for a mis-

sion length of 10 hours. Table 4 contains a compares the

reliability of the three configurations. We solved a trun-

cated model (described in more detail later in this section)
which produces bounds on the unreliability from a partial
solution of the model. Table 4, shows the bounds on the

unreliability,and the best case (optimistic)estimate of

the probabilities of exhaustion of network elements (exh

N E), exhaustion of processing elements (exh PE) and near

coincident failures (NCF).

Configuration #2 (that distributed the hot spares

across the network elements) not only required a more
complicated faulttreeforanalysis,but alsowas apprecia-

bly lessreliablethan configuration#I. In configuration

#2, the failureof 2 network elements (alone)can killthe

system, sincethe failureof 2 network elements removes

2 members from at leastone triad.For example, ifNEt

and NEg both fail,then Tit and TI_ are both disabled,

and no spare isavailableto replacethem (because of the
functionaldependencies).The solutionof the model for

configuration#2 shows that the predominant cause of

failureisthe exhaustion of network elements. In config-

uration #I, the lossof 2 network elements (alone) does

not cause any triadto fail,even though itcan render all
the spare elements unusable.

In the #3 configuration,the spare elements remained

unpowered untilneeded, resultingin a modest decrease

inunreliability.Sincenear-coincidentfailurescontributed

more highly to the unreliabilityof the system, the effect

of keeping the PEs unpowered was not as significantas

might be expected.

For allthreemodels, the Markov chain was truncated

after the considerationof 2 or 3 faults,and so a pair

of bounds on the actual reliabilitywere generated. The

bounds were tightenough afteronly considering2 faults

forconfiguration#2, but we needed to consider a larger
model for the other two cases. The reason that the

bounds were tighterfor configuration#2 is that there

were a significantnumber of failurestatesencountered

when only considering2 component failures.In the #I

and #3 configurations,therewere not many failurestates

with only 2 failedcomponents. Unfortunately,the num-

ber of statesin a Markov chain increasesexponentially.

with the number of component failuresconsidered,so the

increasein accuracy isaccompanied by a large increase

in solutiontimes.Table 5 compares the resultsobtained

from the smaller model (truncated after2 failures)and

the largermodel (truncated after3 failures),as well_.s

the sizeof the models and the run time forthe complete

generation and solution of the model on a DECstation
3100.

7 ASID MAS: a mission avionics

system

7.1 System Description

The AS1D (Advanced System Integration Demonstration)

project was the first large scale effort in the development

of the PAVE PILLAR architecture for advanced tactical

fighters. The Boeing Military Airplane Company was one

of five contractors who designed implementations of the

FTS - 14 Dugan, et al. 1991 AR&MS Tutorial Notes

111



+ +

System Failure

+

Figure 23: Fault tree model for configuration #2

[ Configuration

(Best Case) Unreliability

(Worst Case) Unreliability
(Best case)exh. NE

(Best case)exh. PE

(Best case) NCF

H #2: Hot spare per NE
0.207 x 10-6

0.417 x I0-s

0.174 x 10-6

0.327 x I0-s

0.302 x I0-z

#1: tlot spare per triad

0.135 x 10 -s

0.910 x 10 -s
0.302 x 10 -_

#3: Cold spare per triad

0.264 x 10 -z

0.266 x 10 -'r

0.104 x 10 -s

Table 4: Results of the solution of all three FTPP models

[ Configuration #2: Hot spare/NE ] #I: Hot spare/triad ] #3: Cold spare/triad]

Truncated at 2 component allures

(Best Case) Unreliability

(Worst Case) Unreliability

Number of states

Number of transitions

: Runtime (CPU seconds)

0.207 x 10 -_

0.417 x 10 -e

201

877

138

0.406 x 10 -z

0.242 x 10 -e

123

581

99

0.263 x 10 -z
0.132 x 10 -e

225

817

99

Truncated at 3 component failures

(Best Case) Unreliability

(Worst Case) Unreliability
Number of states
Number of transitions

Runtime (CPU seconds)

analysis not

necessary for

tAis ezample

0.406 x 10 -¢

0.407 x 10 -7
961

5469
2653

0.264 x 10 -7
0.266 x 10 -7

2307
9777

5055

Table 5: Comparison of accuracy and model size
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Figure 24: Fault tree model for configuration #3 with one COLD spare per triad
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PAVE PILLAR project. A unique feature of the Boeing
implementation [3] is the use of dual processor pairs wher-

ever a single processor is required. This processor-pair

uses comparison monitoring so as to achieve very high lev-
els of error detection. For critical functions, high levels of
reliability are assured by using redundant processor-pairs

in duplex or triplex mode. We analyze the reliability of

the critical functions of the mission avionics subsystem of

the ASID system.

There are several critical functions within the mission

avionics system (MAS). The loss of any of these func-
tions causes the system to fail. These critical functions

include the vehicle management system (VMS), the crew

station control and display functions, mission and systems

management, local path generation, and scene and obsta-
cle following functions. The vehicle management system

provides airframe control, including flight and propulsion

control, as well as providing utility systems management

and control. The crew station subsystem displays infor-

mation to the pilot, contains mechanisms for pilot control

actions, and manages crew station activity. The mission

and systems management subsystem allocates resources
for real time control functions.

Figure 25 is a block diagram of the architecture of the
critical mission avionics system. One processing unit is

required for the crew station functions, local path genera-
tion, and mission and system management. Each of these

processing units is supplied with a hot spare backup to
take over control if the primary processor should detect
an error. Each of the processing units is really a pair of

tightly coupled processors so as to maximize the proba-
bifity of fault detection and minimize latency. Although

there are really 4 active processors for each of these func-
tions, we treat the processor-pairs as a single processing

unit, since they are not used independently. When a mis-

match of results is detected, both members of the pro-

cessing pair are removed from the system. Figure 25 thus

shows that there are two processing units for these func-
tions, where one is the primary unit and the other is a

hot spare.

The scene and obstacle and VMS subsystems both re-
quire more functionality than one processing unit can pro-

vide, and thus each use 2 processing units. The scene and

obstacle processing units are also replicated, providing a

hot spare backup. The VMS system is triplicated, pro-

viding 2 hot spare backups.

In addition to the hot spare backups, 2 additional pools

of spares are provided, each containing 2 spare processing
units. The first pool can be used to cover the first 2

processor failures in the subsystems other than the VMS;
the second pool covers the first 2 failures in the VMS

subsystem.

The subsystems are connected via 2 triplicated bus sys-

tems, the first being a data bus and the second being the

mission management bus. The replicated memory system
is connected to the data bus. The VMS has an additional

triplicated bus, the vehicle management bus.

7.2 Failure criteria and parameters

The system fails if any of the functions cannot be per-

formed, or if both of the 2 memories fail, or if all 3 of any

one type of bus fail. The following MTBF (mean time be-
tween failures) values, giving rise to the following failure
rates, were used.

• proce_or pairs: 40,000 hours; failure rate: 2.5 x 10 -s

• buses: 400,000 hours; failure rate: 2.5 x 10 -6

• memories: 1,000,000 hours; failure rate: 1.0 x 10 -6

7.3 Fault recovery

Fault detection is perfect (because of the processing pairs)
but it takes between 0.5 second and 5 seconds (uni-
formly distributed) for recovery to occur. If a second,
near-coincident failure occurs during this interval, we say

that the system fails because of near-coincident fa:lures

(NCF).

7.4 Fault tree model

The fault tree model of the minion avionics system is

complicated by the presence of the pooled spares. For

ease of exposition, we first present a fault tree model that

ignores the pooled spares. We then describe the method-

ology for modeling pooled spares via a fault tree with

sequence dependency gates, by way of a simple example.

Finally, we define the full fault tree model of the mission

avionics subsystem including the pooled spares.

7.4.1 Fault tree with no pooled spares

The fault tree model of the mission avionics subsystem
with no pooled spares is shown in figure 26. This fault
tree shows that the system fails if any of the critical func-

tions fail, or if either of the bus systems fail, or if both

memories fail. There are 3 types of components in the

example system, processing units (type 1), buses (type 2)

and memories (type 3). The crew station, for example,

uses 2 components of type 1, so its basic event is labeled
2 * 1. The memory system uses 2 memories and is thus

labeled 2 * 3, while the mission management bus system
uses three buses and is labeled 3"* 2.

7.4.2 Modeling pooled spares

Before we add the pooled spares to the fault tree model

of the mission avionics system, consider a simple system
with two duplexes and 2 pooled spares. The fault tree
model of a 2 duplex system is shown in figure 27, while

the equivalent Markov chain is shown in figure 28. This
equivalent Markov chain is determined automatically by
HARP.

Next, consider the desired Markov chain representation
of the same 2-duplex system with the addition of 2 pooled
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Figure 25: Block diagram of mission avionics system architecture
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Figure 26: Fault tree model of mission avionics system with no pooled spares
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Figure 27: Fault tree model of a 2-duplex system

Figure 28: Markov chain model of a 2-duplex system

1,

Figure 29: Markov chain model of a 2-duplex system with
2 pooled spares

Figure 30: Fault tree model of s 2-duplex system with 2

pooled spares

spares (figure 29). The 2 pooled spares cause 2 states
to be added to the front of the Markov chain. These 2
state_ represent the first 2 failures in the system which will

deplete the spares. After the first 2 failures, 2 functioning
duplexes remain, and the rest of the Markov chain in

figure 29 is identical to that in figure 28.

We can use the fault tree shown in figure 30 to represent
the 2-duplex system with 2 pooled spares. In figure 30,

the combination of the 2/6 gate (which fires after the
first 2 of 6 failures) and the FDEP gate creates s Markov
chain that models the first 2 failures of 6 components.
After the first 2 failures, the FDEP gate stops any more

of the 6 components from failing. The two SEQ gates in
figure 30 do not allow the two basic events labeled with
1 * 2 to begin to fail until after the 2/6 gate h_ fired.

After the 2/6 gate has fired, then the rest of the fault

tree (which is identical to the one in figure 27 can occur
as usual. This combination of FDEP and 5EQ gates can
be used in a more general setting to tie multiple Markov

chains together.

7.4.3 Full model and results

Figure 31 is tile full fault tree model of tile mission avion-

ics system, including the pools of spares. The leftmost
FDEP and SEQ gates show the 2 spares for the vehicle

management system, while those to the right represent
the other 2 spares.

Because of the sequence dependency gates, this fault
tree cannot be solved by standard combinatorial meth-

ods, but rather must be converted to a Markov chain for
solution. HARP performs this conversion automatically,

and produces a truncated Markov chain with 479 states

and 2517 transitions. The Markov model is truncated af-
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Figure 31: Full fault tree model of mission avionics system

ter considering 5 component failures. Instead of produc-

ing an exact reliability estimate, bounds that encompass

the reliability of the full model are produced. For a 200
hour interval, the unreliability lies between 1.138 x 10 -_
and 1.146 x 10 -7.

8 Three fault tolerant hypercube

architectures

We next model three fault tolerant hypercube architec-

tures. All three contain 8 processing nodes connected
in a hypercube of dimension 3. All three consist of 2

fault-tolerant modules with each module containing 4 pro-

cessing nodes. The three architectures differ in the ways
that spare nodes are incorporated into the fault-tolerant

modules, in the way that messages are routed between

processing nodes, and in the architecture of the individ-

ual processing nodes. The architectures are described in

more detail in a paper that appears in the proceedings of

this symposium [5] and are discussed only briefly here.

8.1 System description

8.1.1 Architecture 1

Architecture 1 is based on the hierarchical approach to

sparing proposed by Rennels[17] and is depicted in figure
32. It consists of 2 fault tolerant modules of processing
nodes. Each module contains 4 processing nodes and one

spare node. The spare is connected by a port to each of

the 4 active processors in the module.

The processing nodes themselves are comprised of 5

individual processors (4 active processors and a spare)

which communicate over an bus and share a memory

module. The memory module contains spare bit planes

and spare chips within a bit plane. The proce_ing node is

connected to its neighboring nodes in the hypercube by 4

ports. Three ports communicate across the three dimen-

sions of the hypercube, and the fourth port communicates
with the spare processing node of the module.

8.1.2 Architecture 2

Architecture 2, also depicted in figure 32, is identical to

Architecture I except that the ports within each pro-

cessing node are replaced by hyperswitch ports[7]. The

hyperswitch allows an adaptive routing method to avoid
failed or congested links within the hypercube. It permits

any 2 nodes of the hypercube to communicate as long as

there exists any nonfailed path between them anywhere

throughout the hypercube.

8.1.3 Architecture 3

Architecture 3[6], depicted in figure 33, differs from archi-

tectures 1 and 2 in several important ways. Processing
nodes are again configured into 2 fault tolerant modules
(each containing 4 active processing nodes and one spare),

however the inter-node connections are mediated by de-
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Node:
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Figure 32: Architecture 1 (Rennels)

coupling switches rather than being direct connections be-

tween ports of neighboring nodes. The hypercube connec-
tivity and the switching of spares online and failed nodes

offline is performed using these decoupling switches[6].
The switches are intended to be comparatively simple de-

vices. One consequence of using the switches to control

access to the spare nodes is that the spares cannot provide

redundancy for links a.s was possible for architectures I

and 2.

The processing nodes of the hypercube are much sim-

pler and contain processors that are much less powerful

that those of architectures 1 and 2. Each processing node

consists of 2 processors which perform identical compu-
tations in parallel. The output is compared to detect
faults. A recovery module is responsible for fault han-

dling upon the detection of a processor fault. The node

may either declare itself failed or attempt a reconfigura-
tion to a simplex configuration upon detection of such a

processor fault. Both processors have access to a single
memory module and a DMA (direct memory access) mod-

ule. Finally, each processing node communicates with the

outside world through three ports, each of which connects
the node to its neighbor across one dimension of the hy-

percube.

For this discussion we examine only the processing

nodes of the various candidate architectures in isolation

from the ensemble. The processing nodes of each archi-

tecture themselves can be configured in a variety of ways.
The configuration chosen can affect the reliability and

Figure 33: Architecture 3 (Chau and Liestman)

power consumption of the node, which can in turn affect
the overall ensemble reliability of the hypercube multi-

processor.

8.2 Failure criteria and parameters

The processor nodes for architectures 1 and 2 are identi-

cal, so their failure criteria are closely related. The differ-
ence between them is due to the message routing scheme

employed by each architecture. A processor node for ar-
chitectures 1 and 2 will fail if:

• the memory fails OR

• the bus fails OR

• 2 out of the 5 processors fail (the first processor fail-

ure is presumably recovered from by switching in the

spare to take the failed processor's place) OR

• the node is disconnected from the other processing

nodes in the hypercube.

The events that cause a node to be disconnected differ for

the two architectures.

The routing algorithm used for architecture 1 allows

only one path between each pair of nodes in tile hyper-

cube. Since the spare processing node in each of the two
fault tolerant modules can relay messages within the mod-

ule when a direct connection between 2 nodes in the mod-

ule is not possible, it takes the failure of 2 of the four ports

in a processing node to disconnect the node. In Architec-

ture 2, a hyperswitch is used instead of the single path

routing algorithm, so that all four ports in a node must

fail in order to disconnect the node.

A processing node for architecture 3 fails if:

• the memory fails OR

• the DMA unit fails OR

• both processors fail OR,
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• since the single path routing algorithm is used for
this architecture, the node will fail if any of its 3
ports fail.

The component failure rates for all three architectures
are listed below.

Active processor (architectures 1 and 2): 1.990x 10 -s

per hour

Active processor (architecture 3): 2.306 x 10 -7 per
hour

• Warm spare processor(architecture 2): 1.0 x 10 -s per
hour

Shared Memory (architectures 1 and 2): 3.477 x 10 -7
per hour

Memory (architecture 3): 1.147 x 10 -7 per hour

DMA module (architecture 3): 3.477 x 10 -7 per hour

Intra-node bus(architectures I and 2): 1.147 x 10 -7
per hour

Hyperswitch and I/O port (all architectures):
3.477 x 10 -7 per hour

8.3 Fault recovery

The FEHM used for the processors assumes that a pro-

censor failure can be detected, located, and the spare suco

cessfully switched in to replace the failed processor 95%
of the time, and that the time required to do all of this
is uniformly distributed between 0.9 seconds and 1.1 sec-

onds. The remaining 5% of the time the reconfiguration
attempt does not succeed, leading to node failure. The
FEHM used for the ports assumes detection and deacti-

vation of a failed port is successful 98% percent of the
time, and that the time required for this is exponentially

distributed with a mean of 0.1 sec. Again, the remaining
2% of the time a port failure is not suece_fully detected,
leading to node failure. No transient restoration is at-

tempted, i.e., all failures are considered to be permanent.

8.4 Fault tree models

8.4.1 Hot spares

Figures 34 and 35 model the processing nodes in archi-

tectures 1 and 2 when the spare processor in the node is

a hot spare (the spare is powered on and operating all the
time) and hence fails at the same rate as the active pro-

cessors. The fault trees differ only in the modeling of port

failures, as architecture 1 fails when 2 of the four ports

fail (hence the 2/4 gate), while architecture 2 doesn't fail

until all four ports have failed (hence the AND gate). Fig-
ure 36 depicts a fault tree model for the processing nodes
of architecture 3.

[ Node fails I

Figure 34: Fault tree model of architecture 1 processing
node with hot spares

I Node fails ]

Figure 35: Fault tree model of Architecture 2 processing
node with hot spares

INode fails]

Figure 36: Fault tree model of Architecture 3 processing
node with hot spares
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8.4.2 Cold spares

Power consumption by a multiprocessor with spare nodes
can be reduced by having the spares be cold spares, un-

powered until they are needed to replace a failed active

processor. A cold spare processor cannot fail until it is
activated and brought online. In HARP this type of con-

figuration is modeled using the Cold Spare gate, as de-
picted in figure 37 by a fault tree for architecture 2. The
cold spare gate ensures that the spare processor does not
fail until one of the 4 active processors fail. The 2/5 gate

in parallel with the cold spare gate maintains the require-
ment that 2 processor failures cause the node to fail. Such

a configuration not only reduces power consumption, but
also enhances the reliability of the processing node.

8.4.3 Warm spares

Instead of being unpowered, the spare may be partially
powered up. It may then fail before being activated but at
a lesser rate than the active processors. Such a processor

is called a warm spare and can be modeled in IIARP us-
ing the Sequence Enforcing gate as shown in figure 38 for
architecture 2. In this example two pseudo-components

(appearing as inputs to the OR gate whose output feeds
into the Functional Dependency gate) are used to rep-
resent the 4 active processors and spare before any pro-

cessor failures. Upon the first failure of a processor (ei-

ther active or spare), these two pseudo-components are

"turned off" as far as the fault tree is concerned by the

Functional Dependency gate. The 4 remaining proces-
sors, now all active, are represented by the _4*processor"

basic event which appears as the rightmost input to the

Sequence Dependency gate. This basic event had been
"turned off" prior to the first processor failure by the

Sequence Enforcing gate. After the first processor fail-

ure, the leftmost input to the Sequence Enforcing gate is

turned on, which "turns on" the basic event that is its

rightmost input (i.e. the processors of this basic event

are now permitted to fail). Note that because this ba-

sic event is also an input to the top OR gate of the hult

tree, a subsequent failure of any of the 4 processors will
cause the node to fail, again maintaining the requirement
that failure of 2 of the 5 procemmrs cause node failure. Al-

though a spare does not fail while unpowered, upon power
up and activation there can be some probability that the
spare does not operate properly. Such a situation can be

modeled as a warm spare.

8.5 Results

Figure 39 compares the I0 year unreliabilities of the pro-

ceasing nodes of each of the three architectures assuming

all of them use hot spares. The unreliability of the ar-

chitecture 3 processing nodes is much lower that those
for architectures 1 and 2, reflecting that the reliability of
individual processors for architecture 3 is much greater
than that of the others and there are only 2 that can fail

[Nod fails ]

Figure 37: Fault tree model of architecture 2 processing
node with cold spares

[ Node fails ]

Figure 38: Fault tree model of architecture 2 processing

node with warm spares
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Figure 39: Comparison of node unreliabilities of all three

architectures using hot spares
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Figure 40: Unreliability of architecture 2 processing nodes

with various types of spares

[4]

[5]

[6]

[7]

[8}

[9]

instead of 5. As anticipated, the unreliability for archi- [10]
tecture 2 nodes is slightly better than the unreliability for
architecture 1 nodes.

Figure 40 shows the 10 year unreliabilities for Architec-

ture 2 processing nodes using hot, warm, and cold spares.

In general, the reliability increases from configuration to [11]

configuration in that order. This is to be expected, since

the failure rate of the spare during its inactive period de-
creases in that order.
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GLOSSARY

Most terms unique to reliability modeling and fault-tolerant systems are defined within th(,

body of each volume of this Technical Paper. The meaning of some terms ar(' well known to

researchers and users of these technologies but may not be familiar to new users of ttvl)rid

Automated Reliability Predictor (HARP) integrated reliability tool (HiRel) system. Thus, the

purpose of this glossary is to primarily aid new users.

Availability

Availability is a t)robabilistic quantity that predicts the ot)erational life of a syst(,m that is

subject to line maintenance (repair). Availability is tile prol)at)ility that a system mL(ter rel)air

is operational at. a specified time. In a Markov chain model representation, repair is nlo(h,l(_(t

by adding transitions from states with n + 1 failed ('onlpoIi(?lltS tO states with _ components.

The transition rate is given as a repair rate. No fault tree model repres('ntation has y('t l)ecn

developed to represent an availability model; therefore, a Markov chain mod(q must t)e giv(,n

to HARP for solu.tion. A fanlt tree model can be used to specify and g(uwrate a pr('lindnary

Markov chain model that the user needs to modify.

Behavioral Decomposition

Behavioral dcconq)osition is a mat.hematical ai)proximation techni(tu(, that redlwes a comt)l('x

fault/error handling model (FEIIM) to a branch point in a Markov chain. The ('ff('cts of the

FEHM tire compensated for by modifying state transition rates. The advantag(, of this t('chni(ttw

is that it, greatly reduces the size of Markov models for solution and complex FEHM I)ehavior
that can be non-Markovian can be modeled.

Bounds or Mathematical Bounds

Large or complex mathematical models often require approximations to keet) their solutions

tractable. Bounds are the numerical expressions of the variation in a computed result due to

mathematical approximation or uncertainty in the accuracy of t.tm inlmt data to tile mo(hqs.

Combinatorial Model

A combinatorial model is a stochastic model that relates combinatorial component failure or

success events to a subsystem or system failure or success, respectively. Combinatorial models

do not distinguish the order of failure events.

Coincident Fault

A coincMent fault exists at the same time one or more other faults are present. A coincident
fault is not a simultaneous fault.

Conservative Unreliability Result

Mathematical quantities can be expressed in two forms, in exact form, which is usually a

symbolic representation such a,s the number rr, or in an approximate form such as a decimal

representation for 7r as 3.14159. When approximations are necessary, the difference between the

exact quantity (which may not be obtainable) and the computed result (which is obtainable) is

called the error. A conservative unreliability result is one where the error in the computed result

is in the direction of increased unreliability.
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Critical-Pair Fault

A critical fault is a near-coincident fault involving two faults. HARP uses three multifault

models to account for critical-pair faults: ALL, SAME, and USER.

Extended Behavioral Decomposition

Extended behavioral decomposition is a generalized behavioral decomposition technique that

allows multiple FEHM entry/exit transitions and multifault near-coincident modeling.

Fault Tree

A fault tree is a notational model that uses symbols resembling logic gates that relates failure

events of components or subsystems to failure events of a system composed of components and

subsystems.

Instantaneous Jump Model

An instantaneous jump model is a Markov model that is an approximation of a more complex

semi-Markov model that produces a conservative result with respect to the semi-Markov model

that is operated on mathematically to become the instantaneous jump model.

Multifault Model

A nmltifault model is a'fault/error handling model that accounts for two or more faults, none

occurring simultaneously.

Near-Coincident Fault

A near-coincident fault is second fault that occurs during the time between the occurrence

of a first fault and its recovery.

Near- Coincident Failure

A near-coincident failure is system failure resulting from a near-coincident fault. To reduce

modeling complexity, a near-coincident failure is assumed to result from a near-coincident fault.

Typically, this assumption results in a conservative result.

Optimistic Unreliability Result

An optimistic unreliability result occurs when the error in the computed result is in the

direction of decreased unreliability.

Primitive

A primitive is any screen image that is an entity that can be manipulated without dissection,

for example, a line, a circle, a fault tree gate, etc.

Semi-Markov Models

Semi-Markov models are generalizations of Markov models. In particular, semi-Markov

models allow generalized state holding time distributions. Semi-Markov models are required
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for fault-tolerant system models to account for fault/error handling times that may not be
exponential.

Sequence-Dependent Model

A sequence-dependent model is a stochastic model that relates ordered component failure

or success events to a subsystem or system failure or success, respectively. Sequence-dependent

models distinguish the order of failure events. These models are more complex than combinato-
rial models and are also more difficult to solve.

Simultaneous Fault

A simultaneous fault is a second fault that occurs at exactly the same instant in time as a
first fault. Markov chain models do not allow such faults.

Weibull Distribution

A Weibull distribution is a two parameter distribution that can exhibit time increasing,
decreasing, or constant failure rates.
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